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Hierarchical Parcel Swapping (HiPS) is a multiscale stochastic model of tur-
bulent mixing based on a binary tree. Length scales decrease geometrically with
increasing tree level, and corresponding time scales follow inertial range scal-
ing. Turbulent eddies are represented by swapping subtrees. Lowest-level swaps
change fluid parcel pairings, with new pairings instantly mixed. This formulation,
suitable for unity Schmidt number Sc, is extended to nonunity Sc. For high
Sc, the tree is extended to the Batchelor level, assigning the same time scale
(governing the rate of swap occurrences) to the added levels as the time scale at
the base of the Sc = 1 tree. For low Sc, a swap at the Obukhov-Corrsin level mixes
all constituent parcels within corresponding subtrees. Well-defined model analogs
of turbulent diffusivity and mean scalar-variance production and dissipation rates
are identified. Simulations idealizing stationary homogeneous turbulence with an
imposed mean scalar gradient reproduce various statistical properties of viscous-
range and inertial-range pair dispersion and of the scalar power spectrum in the
inertial-advective, inertial-diffusive, and viscous-advective regimes. The viscous-
range probability density functions of pair separation and scalar dissipation agree
with applicable theory, including the stretched-exponential tail shape associated
with viscous-range scalar intermittency. Previous observation of that tail shape
for Sc = 1, heretofore not modeled or explained, is reproduced. Comparisons to
direct-numerical-simulation allow evaluation of empirical coefficients, facilitating
quantitative applications. Parcel-pair mixing is a common mixing treatment, e.g.,
in subgrid closures for coarse-grained flow simulation, so HiPS can improve model
physics simply by smarter (yet nearly cost-free) selection of pairs to be mixed.

1. Introduction

Turbulent mixing processes are critically important in a wide range of applica-
tions, from supernovae (Sreenivasan 2019) to phytoplankton dynamics (Kessouri
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et al. 2018), combustion (Cabra et al. 2002, 2005), and pollutant dispersion
(Lim et al. 2022). Given their ubiquitous presence, understanding and accurately
modeling these processes is essential. However, this is challenging due to multiple
time and length scales involved (Argyropoulos & Markatos 2015). The primary
challenge in turbulent flow research is to develop models that can represent these
scales effectively. Such models must capture the complexity of turbulent mixing
processes with high fidelity while balancing computational efficiency, a crucial
aspect for practical applications.
Hierarchical parcel swapping (HiPS) (Kerstein 2013, 2014, 2021) is a minimal

model of turbulent mixing. It involves a binary tree structure in which length
scales at successive tree levels decrease geometrically downward from the apex
of the tree, and as originally formulated, the corresponding time scales follow
inertial-range scaling. Physical fluid parcels reside at the base of the tree, such
that the tree structure serves only to conveniently prescribe the time advancement
of the system state, involving advection and mixing sub-processes.
Turbulent advection is modeled by introducing randomly sampled eddy events,

each of which swaps the positions of two equal-size subtrees. Each parcel has the
same composition as its nearest neighbor, where there is only one nearest neigh-
bor in the binary-tree geometry. When a swap causes a composition difference
between nearest neighbors, the two parcels are fully and instantaneously mixed so
as to restore equality of parcel compositions. Only a lowest-level swap, in which
each subtree is a single parcel, can rearrange parcel pairings and thus induce
mixing. On this basis, the model induces stepwise scalar length-scale breakdown
leading ultimately to mixing at a prescribed dissipation scale, nominally the
Kolmogorov microscale, thus broadly idealizing the phenomenology of passive
diffusive scalars in inertial-range turbulence.
This formulation implies equivalence of the advective (Kolmogorov) and

mixing-dominated (Batchelor) microscales η and ηb respectively, corresponding
to unity nominal Schmidt number Sc = ν/D, where ν is the kinematic viscosity
and D is the molecular diffusivity. Model extension to nonunity Sc has been
proposed (Kerstein 2013) but not yet implemented. Instead, applications to
date have introduced a different type of extension in which the parcel state
is the velocity vector v rather than one or more scalars, enabling flow-field
simulation rather than adoption of a prescribed flow parameterization (Kerstein
2014, 2021). The extension to nonunity Sc is implemented here within the
flow-parameterization framework but can eventually be incorporated into the
flow-simulation framework, as explained in section 5.
Extension to high Sc requires augmentation of the binary tree by appending

levels at the bottom of the tree that represent the viscous-dissipation range. For
this purpose, the added levels are all assigned the same time scale that applies
to the bottom of the inertial range (nominally the Kolmogorov time scale). This
corresponds to the physical picture of stepwise scalar length-scale breakdown
induced by the smallest available eddies, hence the Kolmogorov eddies, which in-
duce successive multiplicative compressions of viscous-range scalar structure until
this process is balanced by molecular-diffusive smoothing at the Sc-dependent
Batchelor scale. For low Sc, the Obukhov-Corrsin scale ηoc is analogous to ηb,
with ηoc > η, and accordingly, homogenization across subtrees corresponding to
scale ηoc is enforced, albeit on the basis of Bernoulli trials rather than assured
homogenization.
Application of swaps to marked fluid parcels, involving no scalar content
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or mixing thereof, is sufficient to time advance parcel-pair separations. The
simplicity of this process allows analytical treatment and consequent determin-
istic advancement of the probability density function (PDF) of pair separation,
complementing information gleaned from Monte-Carlo simulation. For both the
inertial and dissipative regimes, it is shown that the results largely conform to
known and theoretically predicted phenomenology.
Mixing phenomenology is investigated in a configuration that idealizes an

imposed mean scalar gradient in statistically stationary homogeneous turbulence.
Turbulent diffusivity and mean scalar-variance production and dissipation are
shown to have precise mathematical meanings that allow them to be quantified
straightforwardly in nondimensional form. HiPS simulations produce PDFs of
scalar dissipation whose tail shapes conform to predictions of asymptotic analysis.
Scalar power spectra are consistent with known scaling exponents governing
the inertial-advective, inertial-diffusive, and viscous-advective ranges. Conversion
factors relating HiPS analogs of Sc, η, ηb, the Obukhov-Corrsin constant β, and
Reynolds number Re to their physical counterparts are evaluated by comparing
HiPS and direct-numerical-simulation (DNS) results. These conversion factors
enable quantitative application of HiPS to turbulent mixing processes of interest.
In this context, prospects for mixing/reaction closure of under-resolved three-
dimensional turbulent flow simulations are discussed.

2. HiPS model

2.1. Model representation of flow advancement

HiPS is based on a binary tree structure. Each level of the tree is defined by a
set of nodes. Each node branches into two sub-nodes, continuing to the bottom
of the tree where fluid parcels reside. All fluid properties are defined only in the
fluid parcels at the bottom of the tree, though mixing length and time scales are
stored at the other node levels. In contrast to other hierarchical models, there
are no filtered parcel states at higher levels.
Figure 1 illustrates the basic tree structure. The tree shown has N = 5 levels,

where N is the total number of tree levels. Nodes are indicated by circles, and
fluid parcels by squares. At the bottom of the tree, fluid parcels are paired as
defined by their connecting node at the previous level. Parcel proximity is defined
as the level index of the nearest node connecting two parcels. In figure 1, parcel
pairs (a, b), (a, d), (a, f), and (a, p) have proximities at node levels 3, 2, 1, and 0,
respectively. The proximity between a and either c or d is the same (at level 2),
the proximity between a and any of e through h is the same (at level 1), and the
proximity between a and any of i through p is the same (at level 0). Furthermore,
the ordering of parcels with the same proximity is not relevant. For example, the
tree state in figure 1 is unchanged if the first four parcels a, b, c, d were written
as d, c, a, b, since the parcel proximities on the tree are the same.
Turbulent stirring is modeled by rearranging parcels. This involves a sequence

of eddy events, each of which is implemented as follows:
(i) A given node of the tree is selected within accessible levels indexed i = 0

to i = N − 3; this is the base node.
(ii) A random node (or fluid parcel if i = N − 3) two levels down along the left

branch emanating from the base node is randomly selected, and another node (or
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Figure 1: Schematic illustration of the binary HiPS tree showing nodes (circles)
and fluid parcels (squares).

fluid parcel) is randomly selected two levels down along the right branch. These
are grandchild nodes or parcels.
(iii) The two selected grandchildren of the base node are swapped (along with

their subtrees in the case of swapping nodes).

Note that in step 2, grandchild nodes/parcels are selected two levels below the
base node rather than selecting child nodes/parcels one level below the base
node because the latter does not cause any change. The parcel proximity is what
matters, not the left-to-right ordering suggested in figure 1.

Two swaps are shown in figure 1. The first is with the green checked base
node at level 2. The two gray checked fluid parcels labeled a and d are randomly
selected. These two fluid parcels would then be swapped. This would change the
pairing of parcels: (a, b) → (d, b) and (c, d) → (c, a). The second swap selects
the blue striped base node at level 1. The two orange-striped grandchild nodes
are randomly selected, and the two subtrees emanating from these nodes are
swapped. In this case, those subtrees consist of fluid parcels i and j being swapped
with parcels m and n. Note that in the second case, parcel pairings are not
changed, whereas the parcel pairings are changed in the first case. That is, parcel
pairings are only directly affected when swaps happen at the base node level
indexed i = N − 3. Pairing of previously unpaired parcels is deemed to induce
micromixing (implemented as explained in section 2.4), while mixing at other
levels is macromixing that affects the spatial distribution of parcel states but
not the internal compositions of individual fluid parcels. The macromixing at
upper tree levels i < N −3 effectively sweeps the finer scales at lower levels while
inducing a stepwise breakdown of flow structure at the scale of the eddy event
(base-node level), consistent with the behavior of inertial-range turbulent eddies
in real flows.
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2.2. Tree length and time scales

As noted above, each tree level is associated with a length scale, L, and a
corresponding time scale, τ , with the largest scales at the top of the tree (lowest
level index in figure 1), L0 and τ0. The length scale at each level is a factor A of
the length scale at the previous level, Li+1 = LiA, which gives

Li = L0A
i, (2.1)

with A < 1. If we consider parcels to occupy fluid volume, then, for a binary
tree, each subtree occupies half the volume as the tree above, with a length scale
ratio of A. If A = 1/21/3, then the cube of the length scale reduction matches the
putative volume reduction. This value of A corresponds to a tree representing a
three-dimensional domain. In general, A = 2−1/d for d dimensions. In Kerstein
(2013) and its sequels, d = 1 , corresponding to A = 1/2, was chosen largely
because the interpretation of the HiPS domain as line of sight through a planar-
symmetric flow was suitable for applications of interest. This provides a larger
length scale reduction for a given number of levels and parcels than for larger
values of A. For reasons explained in section 3.3.2 and Appendix A, A = 1/2 is
the default choice but the choice of another A value is shown to be advantageous
in some situations.
While the domain length scale is L0, corresponding to the sum of the length

scales of all parcels, the largest eddy event at level i = 0 swaps half the parcels on
the domain (that is half the parcels in each of the two half-trees). This corresponds
to a largest eddy size L1 = L0A, which is interpreted as the integral scale LI .
We define two additional scales. The first, l∗ at level index i∗ (with time scale
τ ∗), corresponds to a scalar with unity Schmidt number Sc. This scale marks
the transition between the inertial-advective regime, and the viscous-advective
regime. The other scale is denoted l∗s at level i∗s (with time scale τ ∗

s ), and is
the smallest length scale for a scalar with arbitrary Sc. Section 2.5 gives further
discussion. The smallest eddy length scale on the tree has a level index of N − 3.
We define the HiPS Reynolds number as

Re =

(
L0

l∗

)4/3

= A− 4
3 i

∗
. (2.2)

The time scale at each level is specified based on the turbulent inertial sub-
range where the kinetic energy dissipation rate is constant (Kolmogorov’s second
similarity hypothesis (Pope 2000)),

ϵ ∼ u2

τ
∼ L2

τ 3
, (2.3)

where ϵ is turbulent kinetic energy dissipation. For constant ϵ, we have τ ∼ L2/3,
which gives

τi = τ0

(
Li

L0

)2/3

= τ0A
2i/3, (2.4)

where Li = L0A
i is used. Table 1 illustrates the length and time scales associated

with the tree levels for A = 1/2.
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Level Length scale Time scale

0 L0 τ0
1 L0/2 τ0/2

2/3

2 L0/4 τ0/4
2/3

...
...

...

i L0/2
i τ0/(2

i)2/3

...
...

...

N-3 L0/2
N−3 τ0/(2

N−3)2/3

Table 1: HiPS tree length scales and time scales.

2.3. Eddy selection

2.3.1. Sampling of event times

Given the time scale, τi at each HiPS tree level i, eddy events are performed as
follows. An eddy rate λi is associated with each level. We expect (on average)
one eddy in time τi at each node of a given level, so the rate at each node is 1/τi,
and the rate at all nodes of level i is

λi =
2i

τi
. (2.5)

The total rate of all eddies Λ is the sum of the rates on each level. Eddy event times
are then sampled from an exponential distribution corresponding to a Poisson
process with mean rate Λ,

p(∆t) = Λe−Λ∆t. (2.6)

Here, p(∆t) is the PDF of spacing ∆t between eddy events. The cumulative
distribution function (CDF) is

P (∆t) =

∫ ∆t

0

p(∆t′)d∆t′ = 1− eΛ∆t. (2.7)

Eddy occurrence times are sampled from this CDF as

∆t = − ln(Pr)

Λ
, (2.8)

where Pr ∈ [0, 1] is a uniform random variate. This sampling is illustrated in
figure 2.

2.3.2. Eddy level selection

The selection of the tree level of a sampled eddy event is described. The formula-
tion is designed to capture the full scale range of non-negligible scalar fluctuations,
thus ranging from the integral scale to the smaller of l∗ and l∗s . Specializing to
a single scalar field, the required scale range depends on Sc. The tree can be
extended to any number of levels below the required minimum, so the assumption
that it resolves some arbitrarily small l∗s < l∗ encompasses all cases.
For convenience, the inertial range of scales, l ⩾ l∗, is here labeled I, and

the viscous scale range, l < l∗, is here labeled V . The rate of all eddies in the



7

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
t)

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

P(
t)

Pr

Figure 2: Illustration of sampling eddy times from Pr(∆t).

respective ranges is denoted ΛI or ΛV , which are formulated below. The total
rate is simply Λ = ΛI + ΛV . To determine the region, a uniform random variate
Pr ∈ [0, 1] is selected; if Pr ⩽ ΛI/Λ, region I is selected, otherwise region V is
selected. We then select a particular level in the chosen region.
In the inertial range, the probability of an eddy event at level i is

p(i) =
λi

ΛI

, (2.9)

where ΛI =
∑i∗

i=0 λi. Equations 2.4 and 2.5 give

λi =
2i

τ0A2i/3
, (2.10)

and consequently,

ΛI =
1− (2A−2/3)i

∗+1

τ0(1− 2A−2/3)
. (2.11)

This provides the CDF as

P (i) =
i∑

j=0

λj

ΛI

=
1− (2A−2/3)i+1

1− (2A−2/3)i∗+1
. (2.12)

Finally, i can be sampled as

i =

⌈
log2(1− Pr(1− (2A−2/3)i

∗+1))

1− 2
3
log2 A

− 1

⌉
, (2.13)

where Pr is a uniform random variate on [0,1], (different from that used to select
between regions I or V ).
In the viscous range, the formulation for sampling eddy levels is somewhat

different. In turbulent flow, the smallest eddies are nominally size η, (the Kol-
mogorov scale), but the associated straining and scale compression affects struc-
tures at smaller scales. Any incipient smaller-scale flow structure is dissipated by
viscosity, but for ηb < η, where ηb is the Batchelor scale, scalar-field structure is
created by scale-η eddies and down-scaled by them until its eventual dissipation
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at scale ηb. HiPS scale resolution is extended down to scale l∗s (or optionally,
lower) in order to capture this scalar structure.
In HiPS, size-l∗ eddy events cannot create sequentially smaller-scale structures

down to arbitrarily small scales. In effect, the size-l∗ HiPS eddy captures only one
level of down-scaling even when applied multiple times. The full physical effect
of size-l∗ eddy events is nevertheless captured by implementing eddy events at all
scales below l∗ that are resolved by the HiPS tree, where the sampling of these
events at any given scale less than l∗, and location (node) at that scale, is based
on the time scale τ ∗ = τ0A

2i∗/3. The resulting viscous-advective scalar cascade
is thus captured, as will be shown. Then at scales below l∗, the total rate of all
eddies at some level i is given by λi = 2i/τ ∗.
The probability of an eddy event at level i in the viscous range is then

p(i) =
λi

ΛV

, (2.14)

where ΛV is

ΛV =
N−3∑

i=i∗+1

λi =
1

τ ∗ (2
N−2 − 2i

∗+1). (2.15)

The CDF is

P (i) =
2i+1 − 2i

∗+1

2N−2 − 2i∗+1
, (2.16)

from which i can be sampled, using a uniform random variate Pr ∈ [0, 1], as

i =
⌈
log2

(
Pr(2

N−2 − 2i
∗+1) + 2i

∗+1
)
− 1
⌉
. (2.17)

2.4. Micromixing

Micromixing can be implemented either as an instantaneous event triggered by
an eddy event or continuously in time. The former is employed here owing to its
simplicity and efficiency.
We assume here that scale l∗s coincides with a HiPS level i∗s; the general case of

arbitrary l∗s is treated in section 2.5.2. l∗s is the scale at which molecular diffusivity
(or the HiPS analog of it) balances eddy diffusivity. This corresponds physically
to diffusive spreading of the scalar throughout a level i∗s subtree over the time
period corresponding to the mean time between eddy events at a given level i∗s
base node. For all model case studies and analyis presented here, this balance
is approximated using the following idealized treatment. Immediately after an
eddy at a level i∗s base node is implemented, parcels in each of the two subtrees
emanating from the base node are instantaneously mixed to the mean scalar value
of the parcels in the given subtree. The scalar then has a uniform value in each
of the two subtrees (but the value is generally different in the two subtrees). A
repetition of the same eddy and subsequent mixing can then impose uniformity
across the two subtrees, but nonuniformity can be reintroduced by a subsequent
level-(i∗s − 1) eddy that removes and replaces one of the two subtrees below the
base node.
If i∗s = N − 3, then each subtree is a parcel pair, corresponding to the mixing

protocol in Kerstein (2014). For two parcels a and b, the mixing process for the
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scalar ϕ specializes to

ϕmix =
ϕa + ϕb

2
. (2.18)

For future applications, other micromixing formulations might be advanta-
geous. For example, mixing using a weighting function may be desired. For
variable-density mixing such as in combustion, a mass-weighted mixing rule could
be applied. A further refinement, specialized here to i∗s = N − 3 for illustration,
is to evolve each scalar ϕ in two parcels a and b of a pair continuously in time,
governed by the differential equations

dϕa

dt
=

ϕb − ϕa

τ
,

dϕb

dt
=

ϕa − ϕb

τ
,

(2.19)

where τ is nominally τ ∗
s , possibly with an order-unity constant factor applied.

These equations have an analytic solution that is convenient for application.

2.5. Sc dependence

In section 2.2, we defined l∗ as the transition between the inertial-advective and
viscous-advective regimes, and is the smallest length scale for a unity Sc scalar.
It is analogous to the Kolmogorov scale η, and the two scales are proportional,
(see section 4). Similarly, l∗s is the smallest length scale for a scalar of arbitrary
Sc. It is analogous to the Batchelor scale ηb (for Sc > 1), or the Obukhov-Corrsin
scale ηoc (for Sc < 1), and is proportional to ηb or ηoc, as appropriate.
We define the HiPS Schmidt number as

Sc = (l∗/l∗s)
ps . (2.20)

For Sc ⩾ 1, we have ps = 2. This follows by analogy to a physical flow, for
which τηb

= τη in the viscous-advective regime, with Sc = ν/D, ν = η2/τη,
and D = η2

b/τηb
. For Sc ⩽ 1, ps = 4/3. Again, by analogy to a physical flow,

this follows from the same relations as above, but D = η2
oc/τηoc

, and instead of
τη = τηb

, we have τηoc
= τη(ηoc/η)

2/3 in the inertial range (using equation 2.4).
We now relate the Sc and associated scales to the HiPS tree.

2.5.1. Discretized Sc values

For clarity, the restriction of l∗s values to HiPS levels is initially maintained,
followed in section 2.5.2 by generalization to arbitrary l∗s . In general, a HiPS
simulation may be performed with an arbitrary number of scalars with different
Sc. Figure 3 shows schematics of two scalars on a given tree. The horizontal
lines correspond to tree levels, with the decreasing line width from top to bottom
corresponding to the decreasing length scale with increasing level index. Two
scalars are shown with Sc < 1, and Sc > 1. The level i∗ is at the same location
in both schematics since a single HiPS flow is considered. Each scalar is mixed
across the respective left and right subtrees emanating from nodes at level i∗s, as
indicated. For the Sc > 1 scalar pictured, these left and right subtrees are simply
parcel pairs.
The Sc is related to the tree levels i∗ and i∗s as follows. Sc was defined in

equation 2.20 as Sc = (l∗/l∗s)
ps . Equation 2.1 gave Li = L0A

i, and we have
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Figure 3: Schematic of the HiPS tree levels for low (left) and high (right) Sc
scalars for Sc corresponding to tree levels.

l∗ = Li∗ and l∗s = Li∗s
. These give

Sc = Aps(i
∗−i∗s) = A−ps∆i. (2.21)

For A = 1/2, and ps = 4/3 for Sc ⩽ 1, we have Sc = 42∆i/3 giving Sc ≈ 1, 0.4,
0.16, 0.062, 0.025, for ∆i = 0, -1, -2, -3, -4, respectively. For Sc ⩾ 1, ps = 2, and
Sc = 4∆i = 1, 4, 16, 64, 256, for ∆i = 0, 1, 2, 3, 4, respectively.

2.5.2. Arbitrary Sc

The formulation presented above identifies Sc values associated with integer levels
of the HiPS tree. Arbitrary Sc corresponds to scalars with l∗s between two HiPS
tree levels, and i∗s may not be an integer. For a scalar with a given Sc, i∗s is
computed as i∗s = i∗ − (logSc)/(ps logA), or

Sc < 1 : i∗s = i∗ − 3 logSc

4 logA
, (2.22)

Sc > 1 : i∗s = i∗ − logSc

2 logA
. (2.23)

Levels i− and i+ are considered for the lower and upper levels bounding i∗s.
Refer to figure 4 for a schematic. Eddy events that occur on levels at or above i+
result in mixing of the scalar across each of the left and right subtrees emanating
from the level i+ eddy node. For a level i− eddy event, the scalar is mixed across
the two subtrees of the level i− node with probability p−, where

p− =
i+ − i∗s
i+ − i−

= i+ − i∗s. (2.24)

The second equality holds since i+ − i− is always unity. This probability is linear
in index space and takes a value of 1 when i∗s = i− and a value of 0 when i∗s = i+.
Using equations 2.1, 2.4, and 2.5, p− can be written as

p− =
log(l∗s/l+)

log(l−/l+)
=

log(λ∗
s/λ+)

log(λ−/λ+)
. (2.25)

This form illustrates that while there is a linear interpolation of p− in index
space, the corresponding interpolation between eddy lengths, times, or rates is
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Figure 4: Schematic of the HiPS tree levels for (a) low Sc and (b) high Sc
scalars.

logarithmic, consistent with the geometric progression of the scales with tree
level.

3. Results

3.1. Simulated mixing configuration

As formulated in the previous sections, HiPS simulations correspond to scalar
mixing in homogeneous turbulence. In the following, the scalar is evolved subject
to a mean gradient, which is imposed using a jump-periodic boundary condition.
This results in a statistically stationary scalar field for comparison with DNS.
The scalar field is initialized to be uniform in each half of the tree, with a
difference in value of ∆ϕ0. The scalar gradient is then ∇⟨ϕ⟩ = ∆ϕ0/(L0/2), giving
a dimensionless scalar gradient ofG = 2, when∆ϕ0 is taken as the reference scalar
value and L0 is the reference length scale.
For discussion of the jump-periodic condition, consider a hypothetical domain

with L ≫ L0 and containing a size L0 HiPS domain. The largest eddies at level-0
swap quarter-trees corresponding to half the HiPS fluid volume. Half of these
eddies would involve transport across the domain center of a size-L0 domain, and
half would involve transport between size-L0 domains. The scalar in a half-tree
changes by 2∆ϕ0 from one domain to the next. The jump-periodic condition is
then implemented so that in half of the level-0 eddy events, the quarter-tree that
is swapped from right to left has its scalar values decreased by 2∆ϕ0, while the
values are increased by 2∆ϕ0 in the other quarter-tree that moves from left to
right. This formulation results in the scalar gradient being present only at the
integral scale of the tree. Subtrees of any given half-tree have mean values equal
to that of their parent half-tree.

3.2. Representative instantaneous scalar profiles

To evaluate the HiPS model, three turbulence properties are studied: scalar
spectra, dispersion, and scalar dissipation rate. First, we show basic simulation
results of scalar mixing to highlight the qualitative behavior of the mixing model.
Figure 5a shows a scalar profile plotted against parcel index for Sc = 1. Ten levels
are used. In this simulation, the parcels are initialized as described in the previous
section, but the jump-periodic boundary is not enforced, which results in decay of
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Figure 5: Passive scalar versus parcel index (a) at three times in unsteady flow;
and (b) for three Schmidt numbers in the steady flow, with profiles shifted
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the parcels towards their global average. The plot shows initial, intermediate, and
nearly-mixed profiles at 0τ0, 6τ0, and 15τ0. Multiple realizations can be computed
to gather statistics and compute quantities such as joint scalar PDFs.
For a tree with N = 10 and Sc = 1, we have i∗ = 7 and Re = A−4i∗/3 ≈ 645.

Simulations with the same Re, but higher Sc, will have additional tree levels, as
outlined above.
Figure 5b shows scalar profiles versus parcel index for three Schmidt numbers

of 1/16, 1, and 16 with the jump-periodic condition used. For clarity, the curves
for Sc = 1 and Sc = 16 have been shifted upwards by 4 and 8 units, respectively.
As the Schmidt number increases, the HiPS-analog of diffusivity decreases, and
fluctuations occur at smaller length scales. All three scalars were transported in
the same simulation, so that the structures observed in the figure are consistent
for the three scalar profiles.

3.3. HiPS dispersion

3.3.1. Background

The dispersion of a particle pair under the influence of turbulence is a fundamental
problem in fluid dynamics (Elsinga et al. 2022). Dispersion refers here to the
separation time history of an initially close pair of particles. Predictions for
turbulent dispersion of particle pairs date back to 1926, when Richardson (1926)
published an empirical approach indicating that the mean squared separation,
⟨Y 2⟩, grows as the third power of time, t3 in inertial-range turbulence (Jullien
et al. 1998). Obukhov (1941) considered dispersion in terms of Kolmogorov’s
similarity theory. For dispersion in the inertial subrange and after an initial
induction time, particle dispersion ⟨Y 2⟩ is given by ⟨Y 2⟩ = gϵt3, where g is
the Richardson constant. This dispersion scaling follows dimensionally if the
dispersion in the inertial range depends only on ϵ and time t.

3.3.2. Analysis of parcel-pair dispersion

Using the approach proposed in Kerstein (2013), the dispersion properties of
HiPS are analysed by deriving a differential equation for the evolution of the
probability of pair separation at given tree level. In HiPS, the separation between
two parcels of proximity i (defined above) is ALi. For convenience, we refer
to parcel separation level as the minimum number of levels k that need to be
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traversed to get from one parcel to another along a connected path within the
HiPS tree. Then in figure 1, parcels a and b have separation k = 1 levels, parcels
a and d have separation k = 2 levels, and parcels a and k have separation k = 4
levels. Parcel separation index k is related to proximity index i as k = N − 1− i,
giving increasing k with increasing parcel separation. We consider separation
levels k ∈ {1, 2, . . . , N − 1}.
Consider an ensemble of HiPS trees with np total parcel pairs across all trees

that initially have separation index k = 1. Parcel separations must initially
increase, but then eddy events can either increase or decrease the pair separation.
The rate of change of the number of pairs with separation index k is given by

dnk

dt
= Ik−1nk−1 +Dk+1nk+1 − (Ik +Dk)nk. (3.1)

Here, I and D are the rates of eddy events that cause an increase I or a decrease
D in parcel pair separation. The subscripts on I and D indicate the separation
from which the increase or decrease occurs. Ik−1nk−1 is the rate of eddy events
that increase the separation index from k−1 to k, times the number of pairs with
separation index k−1, which gives the rate of change of the number of pairs with
separation index k caused by increases from separation index k−1. The first two
terms on the right-hand side of equation 3.1 create pairs with separation index
k from neighboring index values (increase from k − 1 or decrease from k + 1).
The third and fourth terms remove pairs of index k as they are increased or
decreased to neighboring levels k + 1 and k − 1. Increases from k − 1 to k occur
by separation-level-k eddy events, and Ik−1 = 1/τk, where τk is the time scale at
the tree level corresponding to separation index k. Similarly, decreases from k+1
to k occur by separation-level-(k + 1) eddy events, and Dk+1 = 1/(2τk+1). The
1/2 factor on D is because half of such eddy events decrease the separation and
half leave it unchanged, depending on the subtrees chosen for the swaps.
If we divide equation 3.1 by np then we have the fraction of parcel pairs for

separation index k, which we can interpret as a probability Pk of separation
level k. This corresponds to a classic birth-death process, where the evolving
separation of a given parcel pair is a continuous-time Markov chain (Crawford
et al. 2018). Parcels with separation k = 2 correspond to the i∗ level. Then
τk = τ ∗(Lk/l

∗)2/3 = τ ∗A
2
3 (2−k). Let B = A2/3 and T = t/τ ∗; reordering terms we

can write equation 3.1 as

dPk

dT
= Bk−2Pk−1 −

(
Bk−1 +

Bk−2

2

)
Pk +

Bk−1

2
Pk+1. (3.2)

This is a system of coupled differential-difference equations with a tridiagonal
matrix form. The initial condition is P1 = 1, Pk>1 = 0. The matrix of coefficients
of P is singular since

∑
k Pk = 1, so we solve for k = 1 to k = N − 2, with

PN−1 = 1 −
∑N−2

k=1 Pk. Note that for k = 1, the first and third additive terms in
equation 3.2 are zero since there are no eddy events at the tree level corresponding
to k = 1 (i = N − 2). Similarly, the second and fourth terms are zero for k =
N − 1 since there are no levels above the apex of the tree. Equation 3.2 is solved
analytically by an eigendecomposition.
Figure 6 shows results of this analysis for a tree with N=16 levels. The

probabilities Pk are plotted versus level separation index k for several times on
linear and log scales. As noted, the time advancement is initialized with P1 = 1,
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Pk ̸=1 = 0. The Pk profiles then migrate to higher k in time. At large T , a stationary
distribution for a bounded k range is reached, which is given by

Pk =
2k−1∑N−1

j=1 2j−1
=

2k−1

(2N − 2N−1 − 1)
. (3.3)

This simply reflects that a given parcel’s partner in the pair can have one position
that has separation index k = 1, two positions with separation index k = 2,
four positions with separation index k = 3, etc., consistent with the geometric
growth of the number of parcels with tree level. After sufficient time, the partner
location is statistically independent of the given parcel’s location, resulting in
stationarity. The final PDF at time t/τη = 8000 in figure 6b has the functional
form corresponding to stationarity.
The reasoning that yields the dependence Pk ∝ 2k does not depend on details

such as the k dependence of the coefficients of the terms in equation 3.2 so it is of
particular interest to assess the physical meaning of this result. For this purpose,
the argument k is transformed into the physical-space pair-separation coordinate
r based on conservation of probability expressed as Pk∆k = P (r)∆r where ∆k ≡
1. The estimate ∆r ≈ (dr/dk)∆k where r ∝ A−k gives ∆r ∝ r, reflecting the
geometrical progression of level separations. Combining these results,

P (r) ∝ 2k/r ∝ r−1+ln 2/ ln(1/A) (3.4)

is obtained.
The default value A = 1/2 then corresponds to constant P (r). Stationar-

ity requires P (r) dr to scale as the d-dimensional volume element rd−1 dr, so
P (r) ∝ rd−1. As implied by the counting of parcel pairs with level-k separation,
equation 3.4 gives d = 1 for A = 1/2. By construction, this is consistent with the
line-of-sight interpretation of HiPS for this A value.
The A value for which d = 3 is also of interest for the purpose of consistent

comparison with three-dimensional numerical pair-dispersion results. This corre-
sponds to A = 2−1/3, which is 0.8 to a good approximation. In Appendix A this is
shown to be an advantageous choice for an additional unrelated reason. A = 1/2
nevertheless retains it suitability for planar-symmetric cases and is advantageous
more generally because its cost efficiency makes high-intensity turbulent flows
computationally accessible. This A value is therefore adopted with the exception
of a single data comparison for which A = 0.8 is used.
Given Pk, the mean square separation is given by

⟨Y 2⟩ =
N−1∑
k=1

Y 2
k Pk =

N−1∑
k=1

l∗2A2(3−k)Pk. (3.5)

Figure 6c shows the results of this analysis for a tree with N=16 levels. The
mean square separation and time are normalized by l∗2 and τ ∗, respectively. The
dispersion increases with the cube of time in accordance with Richardson’s result,
but this only becomes clear for a tree with about 14 levels. Cases with up to 100
levels show a slope of 3.0 during most of the transient dispersion regime. Note
that HiPS has a restricted domain size so that for a given Reynolds number (or
number of tree levels), the domain only includes one integral scale. This does
not severely limit dispersion in terms of Richardson scaling since that analysis is
restricted to inertial-range scales smaller than the integral scale.
A fit to the dispersion data gives gϵ = 0.00751. Using ϵ from equation 4.7 in
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Figure 6: Probability of level separation k at several times: (a) linear and (b)
log scales as solution to equation 3.2; (c) time dependence of mean square

parcel-pair separation: individual HiPS realizations (abbreviated “HiPS Rlz” in
the legend), the mean over 100 realizations, and the analytic equation 3.2; (d)

time dependence of mean square parcel-pair separation over 100 HiPS
realizations and of the square of the separation of a single representative parcel

pair.

section 4, below, gives g = 13.9. Values of g vary widely in the literature. Sawford
(2001) presents a review of turbulent dispersion and notes that “Theoretical
estimates of g span nearly an order of magnitude from 0.06 to 3.52, with kinematic
simulations giving the lowest values and the two-point closures generally giving
the largest.” DNS of dispersion give values of g ≈ 0.6 (Sawford & Pinton 2013).
The large discrepancy between HiPS and empirical g values might reflect the
noted disadvantages of the choice A = 1/2. The possibility of a more accurate
result using the preferable value A = 0.8 is impractical to assess owing to the
prohibitive computational cost of running the scalar mixing simulations needed
to determine ϵ for this A value.

3.3.3. HiPS simulation of dispersion

In addition to dispersion results obtained by solving equation 3.2, pair dispersion
statistics from simulated HiPS realizations are shown in figure 6c. The HiPS
dispersion data collection is done as follows. Parcels are indexed from left to
right starting at 0, and each parcel forms a pair with its initial neighbor with
separation k = 1. The locations of the parcels are tracked with an index array
Q, where Qi is the integer location of parcel i. Initially, Qi = i. Parcels (0, 1)
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Figure 7: Simple HiPS tree, with parcel indices labeled in decimal and binary.
The level index i and parcel separation level k are indicated.

form a pair, parcels (2, 3) form a pair, etc., and locations of the parcels in the
pairs are (Q0, Q1), etc. The binary representation of these indices gives the path
to the parcel location. For instance, consider parcel 03 in figure 7. For the five
level tree shown, this parcel has the binary address 0011. Each digit represents a
node below the root; a zero denotes the left branch and a one denotes the right
branch. To get to parcel 03 we go left (0), left (0), right (1), right (1). The level
separation between parcel i and its neighbor j is ki,j = ⌊log2(i⊕ j)⌋ + 1, where
⊕ is the bitwise exlusive-or operator: binary digits are compared at each position
and given a 0 if the digits are equal and a 1 otherwise. So 0011 ⊕ 1101 = 1110.
The position from the right of the leading 1 is related to the separation index:
k3,13 = ⌊log2(1110)⌋ + 1 = 4 The distance of a parcel i to its partner j is then
Yi,j = l∗A3−ki,j .
In figure 6c the mean square parcel pair separation is shown for a HiPS

simulation with 16 levels run for 10τ0. The figure shows the mean square parcel
separation over 100 realizations, which gives results identical the results of the
dispersion analysis in section 3.3.2. This agreement effectively serves as a veri-
fication of the HiPS numerical implementation. In addition to the mean across
all realizations, several curves are shown illustrating the evolution of the mean
square parcel separation in single realizations, each of which time advanced 215

initial pairs of adjacent parcels. These fluctuate about the ensemble mean, and
it is seen that the fluctuations increase with the magnitude of the mean square
separation.
Figure 6d shows the square of the parcel separation of a single pair of parcels

during a single realization, along with the mean square parcel separation over all
pairs in all 100 realizations. The time history of the single pair shows the squared
separation at times corresponding to every 1000th eddy event. With 16 tree levels
and a simulation time of 10τ0, around 50 million eddy events occur so the full
resolution of the pair evolution cannot be clearly shown, but the figure gives an
indication of the behavior of the representative parcel pair. The discrete nature
of the HiPS tree levels is clearly evident with parcels occupying only discrete
values of separation (in this case N − 1 = 15 separation levels). Note that the
parcel pair experiences events that both increase and decrease the dispersion.
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At later times, the pair is increasingly separated. This is because the number
of positions at a given separation increases geometrically with the separation
level, as noted above. It is seen that even at late times and high separation,
the pair is still subject to episodes of very low separation. This is because HiPS
advection is consistent with fluid incompressibity, which requires increases and
decreases in parcel-pair separation so as to produce no overall net expansion or
compression. The balance between increasing and decreasing separation depends
on the effective dimensionality d. For the case shown, corresponding to d = 1,
the episodic decreases to low separation are more frequent than they would be
for larger d. This is a possible explanation of the small g value that is obtained,
a point that is considered further in section 3.3.4.

3.3.4. Analytical dispersion results extending into the viscous range

In contrast to figure 6 that shows the dispersion PDF in the inertial range, figure 8
shows the PDF in the viscous range. The PDF was evaluated for a tree with 81
levels by solving equation 3.2 with B set to unity, reflecting the uniformity of
time scales across tree levels within the viscous range. The solution for the initial
condition P1 = 1, Pk>1 = 0 is shown as solid lines in the figure.
Appendix A presents an analysis of the PDF of parcel-pair separation that

approximates equation 3.2 in the viscous range, for which B = 1, by Taylor
expanding the terms on the right-hand side. This reduces the set of differential-
difference equations to a single partial differential equation, equation A3, repro-
duced here:

∂Pk

∂T
= −V

∂Pk

∂k
+D

∂2Pk

∂k2
, (3.6)

where the two terms on the right-hand-side are drift and diffusion terms, re-
spectively, and V and D are constants. For the specified initial condition on an
unbounded domain, the solution, equation A4, is Gaussian, corresponding to the
parabolas plotted as symbols in figure 8. Owing to the Neumann condition at
each end of the k range, deviations of the exact solution of equation 3.2 from
the Gaussian shape are seen. The deviations could also reflect approximations in
the derivation of equation 3.6, but the good agreement seen for the times and
k values least affected by the boundary conditions indicates that this equation
closely approximates equation 3.2.
On this basis, the log-normal PDF shape that is obtained by transforming from

Pk in equation A4 to P (r), given in equation A5, is reproduced here:

P (r) =
1

r(4πD̂T )1/2
exp

(
[ln(r/r0)− V̂ T ]2

4D̂T

)
, (3.7)

where V̂ = V ln(1/A) and D̂ = D[ln(1/A)]2, likewise closely approximates the
large-k similarity solution of equation 3.2. This reproduces the log-normality
of the viscous-range pair-separation PDF that has been obtained theoretically
(Lundgren 1981). As explained in Appendix A, the theory predicts numerical
coefficients of the log-normal distribution that govern the relative strengths of
the drift and diffusion terms. Owing to the A dependence that is introduced
by transforming from argument k to argument r ∝ A−k as in the derivation of
equation 3.4, the corresponding coefficients in equation 3.7 depend on A. For
A = 1/2, the strength of the diffusion term relative to the drift term exceeds
the theoretical ratio. Exact agreement with the theoretical ratio is obtained for
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A = exp(−2/9), which is close to 0.8. This reinforces the preference for A = 0.8
on theoretical grounds. These observations provide context for the results that
are presented next.
Figures 6 and 8 show dispersion PDFs in the inertial and viscous ranges,

respectively. In figure 9, we show dispersion PDFs for a case that spans both
the inertial and viscous ranges. An equation analogous to equation 3.2 is solved,
but viscous-range phenomenology is introduced for k values less than a designated
pair-separation level k∗ corresponding to the transition between the inertial and
viscous ranges. This is done by enforcing uniform time scales τk = τk∗ for
separation levels 1 ⩽ k ⩽ k∗.
Figure 9 shows dispersion PDFs P (r), where r = A1−k is the pair-separation

distance for any given k. Model results are compared to DNS results from
Scatamacchia et al. (2012) and the sensitivity of the HiPS results to the value of
A is examined. A = 0.8 is taken to be the base case owing to its consistency with
theory.
The initial condition is constructed to be qualitatively similar to that of

Scatamacchia et al. (2012) by matching a linear profile to a parabolic profile
(on log scales). The peak of the DNS initial PDF is close to r/η = 1. The
relationship between η and k∗ is not known a-priori. In principle it could be
evaluated empirically using the procedure applied in section 4, but as noted in
section 3.3.2, the requisite simulations are unwieldy for A = 0.8. Instead, the
initial profile is adjusted horizontally on the A = 0.8 plot so as to obtain the best
qualitative agreement between model and DNS results. This implicitly specifies
the relationship between η and k∗, but this is of no further interest because no
other results are shown for A = 0.8. Then for N = 68 levels and k∗ = 40, the
k location of linear-to-parabolic transition of the initial PDF profile, denoted k′,
is set to 24. In order to isolate the A sensitivity from other adjustments, these
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Figure 9: Dispersion PDFs: (a) HiPS, A = 0.5; (b) HiPS, A = 0.8; (c) DNS
results from Scatamacchia et al. (2012). The times shown are at t/τη of 0, 10,
20, 30, 40, 50, 60, 80, and 110. Note that the initial condition corresponds to
t/τη = 10 in Scatamacchia et al. (2012) (so their times are 10 units higher).
Note the different axes scales used between the model and the DNS, owing to

differences between η and k∗ (and corresponding r∗).
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settings, in terms of the r coordinate, are also used for A = 0.5. Transformation
back to k for this A value gives N = 26, k∗ = 14, and k′ = 8.
Another consideration is the relationship between τη and its model analog τ ∗,

which affects both event frequencies and the specification of normalized data-
collection times. We have taken these time scales to be equal, which yields results
that are satisfactory for present purposes.
The theory result for the relative strengths of drift and diffusion is specific

to the viscous range. Nevertheless, the HiPS representations of the viscous and
inertial ranges differ only in a particular detail, so the theory result implies that
the choice A = 0.8 is likely to yield improved results relative to A = 0.5 even if it
is not the precisely optimal choice. Comparison of the A = 0.8 and DNS results
supports this expectation. Indeed, given that the choice of k′ is the only degree
of freedom that is tuned in this comparison, the results suggest that the model
has considerable predictive ability.
This provides validation of the associated analysis in Appendix A, thus pro-

viding a reliable framework for interpretation of the results in figures 9b and
9c. As noted, equation 3.7 governing the viscous range corresponds to drift and
diffusion in terms of ln r with constant transport coefficients. For the more general
setting in which the coefficients of the terms in equation 3.2 have any prescribed
k dependencies, that equation embodies the same phenomenology except that the
transport coefficients are now r dependent in a manner governed by the prescribed
k dependencies.
On this basis, the phenomenology underlying the time development of the PDF

shapes can be viewed in terms of the combined influences of drift and diffusion.
The rapid depletion at small r and the emerging shoulder suggest ongoing drift
of probability out of the viscous range that encounters a bottleneck in the inertial
range where time scales progressively increase. The small-r slope decreases in time
rather than increasing toward the r2 stationary solution that diffusion dominance
would imply. Drift-dominated evolution is also indicated by the emergence of
a large-r dome that seems to be approaching an invariant shape that slowly
broadens as it drifts rightward.
Before these late-time features emerge, there is a brief transient appearance

of a marginally bimodal shape. This transient is associated with bunching of
the large-r PDF tails in the plot format, followed by greater separation of the
successive tails as the dome shape emerges.
The foregoing observations apply equally to the A = 0.8 and DNS results,

reflecting the absence of any identifiable qualitative differences between them.
Quantitative differences could be at least partly attributable to finite-Reynolds-
number effects. In this regard, the Taylor-scale Reynolds number of the DNS case
is 300. Although HiPS k range is necessarily finite, inertial-range Kolmogorov
phenomenology is embedded by means of the prescribed k dependencies of the
coefficients of the terms in equation A2, (which is a Taylor expanded form of
equation 3.2).
Figure 10 shows the HiPS results for A = 0.8 replotted in another format used

in Scatamacchia et al. (2012) that extends the abscissa to smaller values. Slower-
than-exponential decay of the large-r tails is seen. In contrast, the decay of the
DNS profiles is slightly faster than exponential, with each profile transitioning
abruptly to much faster decay. The DNS results in Scatamacchia et al. (2012), not
shown here, suggest front-like propagation of the transition r values at a speed of
the order of the root-mean-square velocity fluctuation of the turbulent flow field.
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Figure 10: Dispersion PDFs for HiPS with A = 0.8, corresponding to figure 9b,
for the same times as in that figure but omitting the initial condition.

It is reasonable that this quantity would set a bound on the rate of increase of r,
but HiPS does not obey this constraint.
This reflects a model artifact noted by Shraiman & Siggia (1994) in a dif-

ferent context. Models that represent turbulent stirring as instantaneous fluid
rearrangements occurring at Poisson-sampled times are subject to the large-
deviation statistics of the Poisson process. These include a finite probability of
any arbitrarily large excess of separations relative to approaches of parcel pairs in
a given finite time. Figure 10 reflects the Poisson large-deviation statistics, which
are not subject to any prescribed constraint on the magnitude of the implied flow
velocity.
The root cause of the artifact is the Markovian nature of the time advancement,

devoid of any constraint on future event occurrences based on past history. The
remedy is to introduce history effects. Indeed, this is the distinguishing feature of
flow HiPS that is lacking in mixing HiPS. This illustrates the potential benefits
of merging the present extensions of mixing HiPS into flow HiPS in order to
maximize the range of capabilities that are provided within a unitary framework.
This point is elaborated in section 5.
The results for A = 0.5 exhibit the expected features. Unphysically high

diffusivity relative to drift causes excessive probability flux toward low r values.
The relatively short viscous-range time scale results in rapid equilibration as
evidenced by convergence toward a low-k plateau corresponding to stationarity
for this effectively one-dimensional case. The model results bear little resemblance
to the DNS.

3.3.5. Perspectives on A dependence

All indications thus far are that HiPS with A = 0.8 is more useful for fundamental
investigations of turbulence phenomenology than A = 0.5. The strong qualitative
as well as quantitative sensitivity to variation of A is largely due to A dependence
of the effective dimensionality of the model.
These observations imply that the time history of a single parcel pair forA = 0.5

that is shown in figure 6d exhibits an unphysically high frequency of excursions
toward low separation values. In any case, that time trace highlights the degree
of fine-grained detail that the model affordably captures, which can be useful in
multi-physics studies notwithstanding the noted inaccuracies.
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Moreover, the shortcomings of the choice A = 0.5 are not pervasive. HiPS
with A = 0.5 is shown in what follows, and has been shown previously in other
contexts (Kerstein 2014, 2021), to have considerable predictive capability with
minimal empirical input. Other perspectives on A dependence are presented in
Kerstein (2013), including cases in which variation of A modifies the effective
dimensionality so as to change the flow configuration that is represented rather
than the phenomenology of a particular flow.
Finally, examination of A dependence has value beyond the selection of the

best value for a given purpose. In particular, Scatamacchia et al. (2012) describe
the apparent log-normality of PDFs in figure 9c at small r as a non-trivial
result. Present results impart a precise meaning to this characterization. Pair
dispersion phenomenology has been shown here to be broadly encompassed
by the drift-diffusion paradigm. This in itself does not ensure that pairs with
viscous-range separations remain isolated in the viscous range long enough to
develop log-normal statistics, nor that this isolation is insufficient to drive the
system to equilibrium. In other words, the log-normal regime is an intermediate
condition between two possible extremes. The differences between figure 9a and
9b show that the relative strengths of drift and diffusion are determinative in
this regard and that quantifying this relationship on the basis of Lundgren’s
theory reproduces the small-r DNS features. Beyond that, the initial conditions
are obviously influential, as confirmed by other HiPS results (not shown).

3.4. Turbulent flux and diffusivity

The turbulent diffusivity DT is defined in relation to the turbulent scalar flux f
using a Boussinesq assumption,

f = ⟨u′ϕ′⟩ = −DT∇⟨ϕ⟩, (3.8)

where u′ is a velocity fluctuation (used in the definition for reference to standard
treatments) and ϕ′ is the scalar fluctuation. ϕ′ is referenced to the local mean,
which is different in the two half-trees for the jump-periodic case of present
interest.
HiPS formulation obeys equation 3.8 by construction with DT evaluated as

follows. HiPS eddy events can be considered in the context of a random walk,
for which the diffusivity is DT = L2/2τ , where L is the parcel displacement for
each event, and τ is the time between events. The turbulent flux happens at the
scale of the scalar gradient, as noted in section 3.1, so that turbulent flux is due
to level-0 eddies, for which the parcel displacement is L = L0/2. The mean time
between parcel displacements is τ = 2τ0 since only half the parcels are displaced
during a given event. This then gives

DT

L2
0/τ0

=
1

16
(3.9)

as the dimensionless turbulent diffusivity. The corresponding dimensionless flux
is

f

L0∆ϕ0/τ0
= −1

8
, (3.10)

where ∇⟨ϕ⟩/(∆ϕ0/L0) ≡ G = 2 is used.
This flux (and so the corresponding DT ) was verified directly in the HiPS

implementation by considering the scalar flux from the left half-tree to the right,
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corresponding to flux across the domain center. This is calculated as

f =
d

dt

∑
i∈IR

ϕiLp,i =
L0

2

d

dt
⟨ϕ⟩R, (3.11)

where IR are the set of parcels in the right half-tree, ⟨ϕ⟩R is the mean scalar value
in the right half-tree, and Lp,i is the parcel size. Changes to ⟨ϕ⟩R are accumulated
during the simulation as level-0 swaps occur and then divided by the run time to
get d⟨ϕ⟩R/dt. Only half the level-0 swaps are considered since half correspond to
flux across the domain center of interest and half correspond to flux across the
jump-periodic boundary.
Appendix B shows an exact calculation of the flux for a three-level tree,

illustrating the possible states obtained.

3.5. Production and dissipation

In homogeneous turbulence, the scalar variance ⟨ϕ′2⟩ is given by

∂⟨ϕ′2⟩
∂t

= −2⟨u′ϕ′⟩ · ∇ϕ− 2D⟨∇ϕ′ · ∇ϕ′⟩ = P− ⟨χ⟩. (3.12)

The right-hand side of this equation gives the difference between the mean scalar-
variance production P and the mean scalar-variance dissipation rate ⟨χ⟩ (Yeung
& Sreenivasan 2014).
HiPS does not have a continuous physical domain, so calculation of production

and dissipation using the standard definitions cannot be done directly. In addi-
tion, there is no physical diffusivityD defined in the HiPS tree, and micromixing is
implemented phenomenologically. However, mean production and dissipation can
be evaluated based on their roles as a scalar-variance source and sink, respectively.
Using P = −2⟨u′ϕ′⟩ · ∇ϕ from equation 3.12, the first equality in equation 3.8,

equation 3.10, and ∇ϕ = 2∆ϕ0/L0 gives the nondimensional production as

P

(∆ϕ0)2/τ0
=

1

2
. (3.13)

At steady state, production and dissipation balance and we have

⟨χ⟩
(∆ϕ0)2/τ0

=
1

2
. (3.14)

These values were verified in HiPS simulation as follows. Production occurs due
to level-0 eddies that transport fluid across the mean scalar gradient. In each half-
tree, P is computed as the running sum of the difference in scalar variance before
and after level-0 eddy events, divided by the simulation time. The values in each
half-tree are then averaged. Recall that level-0 eddy events do not change the
scalar values of individual parcels. The mean dissipation is computed similarly.
In each half-tree, the running sum of the difference in scalar variance before and
after eddies resulting in micromixing is computed, and this sum is then divided
by the simulation time. The average in the two half-trees is computed.
Appendix B shows an exact calculation of the production and dissipation for a

three-level tree.
The PDF of the scalar dissipation rate can also be evaluated. We present two

approaches for its computation. The first approach makes use of the standard
definition of χ given above in equation 3.12. The gradient ∇ϕ′ is computed as
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Figure 11: For Sc = 1, PDF of the scalar-variance dissipation rate for several
Re, shown in (a) semi-log and (b) log-log coordinates. The dashed curve is a

log-normal distribution with mean and variance corresponding to the Re = 4096
case.

∆ϕ/l∗, where ∆ϕ is the difference in scalar value between two neighboring parcel
pairs. The diffusivity D is not considered directly, rather, χ is scaled so that
⟨χ⟩ =

∫
χ′P (χ′)dχ′, where ⟨χ⟩ is evaluated as described above.

The second approach computes χ using the following scaling: χ = 2D∇ϕ′·∇ϕ′ ∼
(∆ϕ)2/τ . Here, τ is a time scale between the micromixing events. In HiPS, we
take τ to be the time since the last change of the parcel state due to micromixing
events and denote this as τtlc. The ∆ϕ is computed as ϕ̃−ϕ̂, where ϕ̃ and ϕ̂ are the
scalar value of a given single parcel before and after an eddy event, respectively.
P (χ) is then constructed, and we apply the same χ scaling as used in the first
approach. It is found that these two approaches give nearly equal results.
In the sections below, we present the dissipation PDF using the second approach

to compute χ and examine the impact of variations in the Reynolds and Schmidt
numbers.

3.5.1. PDFs of scalar-variance dissipation rate

Figure 11 shows the PDF of log10(χ) for Sc = 1 at four Re of 16, 102, 645, and
4096, which correspond to trees with 6, 8, 10, and 12 levels, respectively. Results
are presented on both log and linear scales. The mean dissipation rate scales as
1/τ0, and is constant. As Re increases, the width of the PDF increases and the
peak shifts to lower log10(χ) values. This is consistent with the fixed values of
L0 and τ0, while the number of tree levels increases with increasing Reynolds
number, which effectively introduces a wider range of scales into the system, and
correspondingly broader PDFs.
PDFs of log10(χ) are shown in figure 12 for nine Schmidt numbers. A fixed

Re of 256 is used, corresponding to a tree with nine levels and i∗ = 6. The Sc
numbers explored are 0.025, 0.063, 0.16, 0.4, 1, 4, 16, 64, and 256, corresponding
to ∆i of -4, -3, -2, -1, 0, 1, 2, 3, and 4, respectively. Results are presented on
linear and log scales. For Sc ⩽ 1, as Sc increases the PDF broadens and the
peak decreases and moves to lower log10(χ). Conversely, for Sc > 1, the PDFs
show very little variation and effectively collapse. The behavior of these PDFs is
largely dependent on the τ ∗

s . For Sc ⩽ 1, τ ∗
s increases with decreasing Sc as the
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Figure 12: For Re = 256, PDF of the scalar-variance dissipation rate for several
Sc, shown in (a) semi-log and (b) log-log coordinates.

scalar length scale corresponds to lower level indices, resulting in the variation of
the PDFs. For Sc > 1, τ ∗

s is constant at τ ∗, and the PDFs are nearly identical.
This behavior is elaborated with additional simulations. Figure 13 is a

schematic of the cases considered. Tree levels are indicated by short black
dashes, and i∗ and i∗s are shown in blue and red, respectively. Quadrants a and b
of the figure have Sc ⩽ 1, and quadrants c and d have Sc ⩾ 1. Quadrants a and c
have constant i∗ (const Re), corresponding to the cases shown in figure 12. Note
that, as figure 13c for Sc ⩾ 1 shows, i∗s varies, but τ ∗

s is constant since τ ∗
s = τ ∗.

Quadrants b and d show Re dependence for constant i∗s.
Figure 14a shows simulations in which τ ∗

s is constant, corresponding to fig-
ure 13b and c, and the PDFs show a strong collapse, especially for Sc ⩽ 1. For
completeness, figure 14b shows the PDFs corresponding to figure 13a and d, for
which τ ∗

s varies for both Sc ⩽ 1 and Sc ⩾ 1. In this case, variations of the PDFs
with Sc are evident for all Sc values.
The shapes of the PDFs shown in the figures are approximately log-normal.

The log-normality of the kinetic energy dissipation rate was originally postulated
in the pioneering work of Obukhov (1962) and Kolmogorov (1962). Gurvich &
Yaglom (1967) presented an analysis arguing for log-normality of “some local non-
negative characteristic of turbulence. . . defined only by the small-scale turbulent
fluctuations (for example, the square of any space derivative of some hydrody-
namic field,” e.g., the scalar-variance dissipation rate. The HiPS simulations are
not exactly log-normal and show some negative skewness. Figure 11b includes
a log-normal distribution with mean and variance corresponding to the Re =
4096 case as the dashed curve. The negative skewness is particularly evident in
figure 11b with the plot with P on a log scale. A very similar PDF shape was
reported by Kerstein (1991) in simulations using the linear eddy model (LEM). Su
& Clemens (2003) presented experimental scalar-variance dissipation-rate PDFs
in planar jets. They noted the negative skewness and offered several possibilities
for the departure from log-normality, including effects of the jet outer boundary,
the moderate Reynolds number of the data, and effects of noise and resolution.
These effects were analysed and discussed with the authors noting that “it appears
that a slight negative skewness is a property of the scalar dissipation PDF.”
The departure from log-normal behavior has been studied in detail. For exam-

ple, Holtzer & Siggia (1994) studied passive scalar mixing in two dimensions and



26

-3-2-10
----

----

𝒊𝒔∗---

-𝒊𝒔∗--

--𝒊𝒔∗-

𝒊∗𝒊∗𝒊∗𝒊∗, 𝒊𝒔∗

----

----

-3-2-10
----

----

----

----

----

𝒊𝒔∗𝒊𝒔∗𝒊𝒔∗𝒊∗, 𝒊𝒔∗

--𝒊∗-
-𝒊∗--
𝒊∗--
--
-

(a)

(c) (d)

(b)

𝑆𝑐 ≤ 1

𝑆𝑐 ≥ 1

∆𝑖	

∆𝑖 3210
----

----

----

----

----

𝒊∗𝒊∗𝒊∗𝒊∗, 𝒊𝒔∗

--𝒊𝒔∗-
-𝒊𝒔∗--
𝒊𝒔∗--
--
-

3210
----

----

𝒊∗---

-𝒊∗--

--𝒊∗-

𝒊𝒔∗𝒊𝒔∗𝒊𝒔∗𝒊∗, 𝒊𝒔∗

----

----

const	𝑖∗ (const Re) const	𝑖"∗
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(1998) for the scaling of the high χ tail. The Sc=1 curves have been shifted by
2.5 vertical-axis units for clarity.

found good agreement with experimental data in more complex configurations.
They show that a stretched exponential function fits the dissipation PDF in
the large dissipation tail. Chertkov et al. (1998) studied scalar advection using
the Kraichnan (1974) model at high Schmidt number. They derived an analytic
expression for the dissipation PDF, which can be represented as log(P (χ)χ1/2) ∝
χ1/3. For χ ≫ ⟨χ⟩, the PDF is given by a stretched exponential, with logP (χ) ∝
χ1/3.
Figure 15 shows log10(P (χ)χ1/2) and log10(P (χ)) versus χ1/3 for HiPS with

Sc = 1 and Sc = 256 (corresponding to figure 14a). Note that the Sc = 1 curves
have been shifted by 2.5 vertical-axis units for clarity. (Without the shift they
collapse with the Sc=256 curves.) In addition to the HiPS data, linear fits through
the 12 largest χ values are shown, which correspond to the fit to Chertkov’s model
in the coordinates plotted. It is seen that for both Schmidt numbers, the HiPS
data reproduces the predicted 1/3 exponent. Moreover, the fit is better when the
subdominant χ1/2 factor is included, indicating at least the possibility that the
model captures this dependence.
There is prior empirical support for the 1/3 exponent for Sc = 1 as well as

high Sc although the theory is specific to the high-Sc Batchelor regime (Chertkov
et al. 1998). No existing model or analysis has explained the Sc = 1 result beyond
speculative proposals and the broad observation that “stretched-exponential tail
is natural for steady PDF of the gradients” (Chertkov et al. 1998).
These authors also note that the phenomenology “is determined by the dy-

namics of stretching (not of rotations), thus it is likely to take place in any
dimensions.” This could explain the accuracy of the A = 0.5 HiPS simulation
despite the caveats noted earlier. A related point discussed in Appendix A is
that the shape of the HiPS viscous-range pair-separation PDF is qualitatively
independent of A, perhaps reflecting the validity of the corresponding theoretical
result (Lundgren 1981) for any spatial dimension.
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3.6. Scalar spectra

Scalar transport in turbulent flow is commonly represented and analyzed using
the scalar energy spectrum. A detailed interpretation of the scalar energy spec-
trum in the context of HiPS was provided by Kerstein (2013) but no computations
were performed. Here we provide a summary description and computations of the
scalar spectrum for various Schmidt numbers.
In HiPS, the energy spectra are inferred from the differences of scalar vari-

ances at adjacent levels of the tree. As noted by Kerstein (2013), the quan-
tity

∫∞
k

E(k′)dk′ “scales as the variance of scalar fluctuations associated with
wavenumbers exceeding k.” The tree structure of HiPS has discrete, geometrically
decreasing length scales with increasing tree level. We can think of each level i
of the tree as having a corresponding wavenumber ki with li = 2π/ki. The scalar
variance in a given subtree at level i is computed as the variance of the parcels
in that subtree, that is, ⟨(ϕ − ⟨ϕ⟩i)2⟩, where ⟨ϕ⟩i is the average over parcels in
the given subtree at level i. This variance is then ensemble averaged over all
subtrees of the given level and over all flow realizations (or time samples in
statistically stationary cases), and is denoted variϕ. The subtree quantity ⟨ϕ⟩i is
a filtered quantity “such that fluctuations at wavenumbers greater than k have
been removed” (Kerstein 2013). A discrete scalar spectrum is then given by

E(ki) =
variϕ− vari+1ϕ

ki+1 − ki
. (3.15)

As A approaches unity, this converges to the familiar continuum relationship
between the scalar spectrum and the variance of the filtered scalar field, assuming
spectrally sharp filtering.
Scalar spectra are obtained for three mixing regimes: inertial-advective, inertial-

diffusive, and viscous-advective. Figure 16 shows scalar spectra from HiPS simu-
lations over a range of Schmidt numbers.
The inertial-advective regime is characterized by turbulent scalar transport

with negligible diffusive effects and spectral transfer from large to small scales
is governed by the scalar-variance dissipation rate χ, which is independent of
the length scale. The increasing advective rate with decreasing length results in
quasi-stationary behavior that responds quickly to energy transferred from larger
scales. In this regime, time scales are related to length scales as τ ∼ l2/3 and the
kinetic-energy spectrum exhibits k−5/3 scaling. In HiPS, this time scale-length
scale relationship is imposed, but as Kerstein (2013) notes “scalar cascading in
HiPS is an outcome rather than a prescribed behavior, so the nature of that
cascading in HiPS must be ascertained.”
It is seen that HiPS does in fact exhibit the -5/3 wavenumber power-law of

the scalar spectrum. While HiPS does not prescribe the cascading behavior, its
formulation is consistent with it, as HiPS subsumes the key phenomenology that
governs it. This is evident as HiPS eddies result in local scale reduction, the eddy
rate increases with decreasing level length giving quasi-stationary behavior, and
the HiPS eddies are non-dissipative at all scales greater than l∗.
Figure 16a shows simulations for scalars with Sc ⩾ 1. Six Sc values are included.

These have Sc = 1, 4, 16, 64, 256, 1024, corresponding to integer values of ∆i =
i∗s − i∗ from 0 to 5, (see equation 2.21). The simulation has a total of 12 levels
and i∗ = 4. This accommodates both a significant wavenumber range of the
inertial-advective regime and extension to smaller scales (i > i∗) for Sc > 1. The
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Figure 16: Scalar energy spectra for (a) Sc ⩾ 1, and (b) Sc ⩽ 1.

simulations were run for t = 1000τ0, and flow states spaced by time intervals τ0
were processed beginning with 50τ0.
All spectra show a clear transition between the inertial-advective regime and the

viscous-advective regime and they all obey the −5/3 scaling at low wavenumbers.
In the viscous-advective regime i > i∗, the spectra show the expected k−1 scaling.
This is most obvious for the scalars with the highest Sc. As the micromix-
ing/dissipation level i∗s is reached, the energy spectrum steepens slightly relative
to the nominal k−1 scaling, reflecting spectral backscatter caused by swap-induced
separation of subtree pairs that transfers spectral intensity to larger scales. In this
regard, analysis of spectral fluxes in HiPS is a promising future undertaking.
In the simple micromixing model used in this study, immediately after a swap

occurs at level i∗s, all parcels in the left subtree of the node at the given eddy level
are mixed to their mean value in that subtree; all parcels in the right subtree are
similarly mixed. This results in no scalar variance among parcels at levels greater
than i∗s, so the scalar energy spectrum becomes effectively chopped at length
scales below l∗, corresponding to levels i > i∗s. As formulated, this eliminates the
need to implement any eddy events at levels i > i∗s because they would have no
effect.
This, however, provides an inadequate representation of the inertial-diffusive

scaling range, for which Batchelor (1959) predicted a −17/3 spectral scaling. This
scaling has only recently been demonstrated by Yeung & Sreenivasan (2013, 2014)
using DNS due to the difficulty of experiments and computational cost of DNS.
Accordingly, the Sc < 1 eddy event, which performs the described mixing if

the event level is i∗, is modified in order to approximate the theoretical spectral
scaling in lieu of the sharp cutoff at level i∗s. Instead of assuredly mixing the
respective two subtrees of the level-i∗ event apex, for any eddy event at level
i ⩾ i∗, both the left and right subtrees of the event apex are individually mixed
with probability p based on a Bernoulli trial. This allows scalar fluctuations
to persist below the Obukhov-Corrsin scale. At level j > i∗s, we then have an
inhomogeneous scalar fraction qj where q = 1 − p. The scalar variance then
would be qj times what it would be in a −5/3 spectrum. Here it is assumed that
the inertial-advective cascade proceeds as usual in the successive generations of
unmixed subtrees, which requires the re-introduction of eddy events at levels
j > i∗s where such events can change the system state (versus the absence of such
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events for q = 0). Recalling that spectral amplitude scales in proportion to the
scalar variance, the -17/3 power-law spectrum scaling is obtained by imposing
the requirement

Ej

Ei∗s

=
varjϕ

vari∗sϕ
= qj

(
kj
ki∗s

)−5/3

=

(
kj
ki∗s

)−17/3

. (3.16)

Now, l∗s/lj = 2j, so kj/ki∗s = 2j, and j = log2(kj/ki∗s ). Using this and solving

the above equation for q gives q = 25/3−17/3 = 0.0625 and p = 1 − q = 0.9375.
This result is approximate because it is based on strict mean-field Kolmogorov
phenomenology, omitting fluctuation effects such as backscatter (discussed with
reference to the viscous-advective regime) that are inherent to HiPS.
On this basis, figure 16b shows simulation results for Sc < 1 in the inertial-

diffusive regime. Each case again includes 12 tree levels and was run for the
same time with the same number of flow states processed as the cases shown in
figure 16a. That figure had i∗ = 4 for Sc = 1, with higher levels accommodating
larger Sc. For Sc < 1 in figure 16b, i∗ = 9 for Sc = 1 (with levels starting at
0), and Sc = 1, 0.397, 0.157, 0.0625, 0.0248, and 0.098 (rounded), corresponding
to ∆i = i∗s − i∗ from 0 to -5, respectively. The slopes of scalar spectra in the
inertial-diffusive regime are approximately -17/3, with some statistical variation
present. The slope in the inertial-diffusive regime is slightly steeper than -17/3,
but it can be brought into agreement with this exponent by using a slightly lower
value of p (around 0.9).
The scalar spectra discussed above and plotted in figure 16 are discrete. As

an alternative formulation, we can evaluate continuous spectra in the inertial-
advective regime, which is convenient for analysis. This is done using a power-law
with an exponent of −5/3, consistent with the presented spectra. The power-law
amplitude is set so that the integral of the continuous spectra, extending to level
1 corresponding to LI , recovers the total variance. Using such continuous spectra,
we next denote the compensated spectrum Ek−5/3 as Ek53; its nondimensional
value is

Ek53

∆ϕ2
0/L

2/3
0

= 4.3. (3.17)

This is based on a simulation withN = 12 levels and Sc = 1, but applies generally
given the collapse of the scalar spectra in the inertial-advective range, evident in
figure 16.

4. Empirical correspondence

In this section we relate HiPS quantities to their physical counterparts. Given
reference scales L0, τ0, and ∆ϕ0, a HiPS simulation is defined in terms of the
Reynolds and Schmidt numbers from equations 2.2 and 2.20, respectively, and
the dimensionless scalar gradient G:

Re =

(
L0

l∗

)4/3

= A− 4
3 i

∗
, (4.1)

Sc = (l∗/l∗s)
ps , (4.2)

G =
∇ϕ

∆ϕ0/L0

. (4.3)
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All other dimensionless quantities will be functions of Re, Sc, and G. Note that
specifying i∗ is equivalent to specifying Re, and that the number of levels needed
to resolve a Sc = 1 scalar is N = i∗ + 3. Given Re and Sc, we then have l∗ and
l∗s .

In previous sections we evaluated the mean scalar-variance dissipation rate,
normalized turbulent diffusivity, and amplitude of the compensated inertial-range
spectrum. They are reproduced here for convenience, and denoted Cχ and CD,
and CE, respectively:

⟨χ⟩
∆ϕ2

0/τ0
= Cχ =

1

2
, (4.4)

DT

L2
0/τ0

= CD =
1

16
, (4.5)

Ek53

∆ϕ2
0/L

2/3
0

= CE = 4.3. (4.6)

Next, three coefficients Cϵ, Cη, and Cs are evaluated, each of which incorporates
an empirical datum such that, combined with the three coefficients above, the
physical quantities that define particular flow cases are fully specified.

The scalar spectrum has the model form E(k) = β⟨χ⟩ϵ−1/3k−5/3. Solving this
for the kinetic energy dissipation rate ϵ and using β = 0.7 as the Obukhov-Corrsin
constant (Gotoh & Watanabe 2015; Donzis et al. 2010) gives

ϵ

L2
0/τ

3
0

=

(
β⟨χ⟩
Ek53

)3

/
L2

0

τ 3
0

= Cϵ = 0.000539. (4.7)

Donzis et al. (2010) performed DNS of passive scalar mixing in homogeneous
turbulence with a mean scalar gradient, corresponding to the HiPS simulations
considered here. They report a sharp transition from inertial-advective to viscous-
advective spectrum scaling at k∗η ≈ 0.05, where η = (ν3/ϵ)1/4 and k∗ = 2π/l∗.
Using these relations, along with τη = η2/ν, gives

l∗

η
= Cη = 126, (4.8)

η

L0

= Re−3/4C−1
η , (4.9)

ν

L2
0/τ0

= Re−1C1/3
ϵ C−4/3

η , (4.10)

τη
τ0

= Re−1/2C−1/3
ϵ C−2/3

η . (4.11)

Three common definitions of the physical Reynolds number are denoted here
as R̂e, R̃e, and R̆e. These are defined below and related to the HiPS Reynolds
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number Re:

R̂e =

(
L0

η

)4/3

= C4/3
η Re, (4.12)

R̃e =
L2

0

τ0ν
= C4/3

η Cϵ
−1/3Re = C−1/3

ϵ R̂e, (4.13)

R̆e =
νT
ν

=
PrTDT

ν
= PrTCDC

−1/3
ϵ C4/3

η Re = PrTCDC
−1/3
ϵ R̂e = PrTCDR̃e.

(4.14)

Here, νT is a turbulent viscosity and is related to DT by the turbulent Prandtl
number PrT , for which an empirical value can be used, e.g., PrT = 0.85 (Li 2019;
Churchill 2002).
Donzis et al. (2010) showed excellent agreement between their DNS data

and Kraichnan’s model (Kraichnan 1968) for the scalar power spectrum in the
dissipative roll-off range,

Ekηb
⟨χ⟩τηηb

=
Cb(1 +

√
6Cbkηb)

exp(
√
6Cbkηb)

. (4.15)

This equation extends an analysis by Batchelor to account for fluctuations of
strain rate magnitude. Donzis et al. (2010) report values of the Batchelor con-
stant, Cb, of 4.93 and 4.52 for Schmidt numbers greater and less than one, respec-
tively. An average value of Cb = 4.725 is taken here. At low kηb, equation 4.15
corresponds to the inertial-advective range with slope k−1, and the right-hand
side of the equation is Cb. The HiPS spectrum in the inertial-advective range has
a slope of k−1 and a sharp cutoff at k∗

s = 2π/l∗s . We relate k∗
s to ηb by integrating

equation 4.15 from zero to infinity and equating it to Cbk
∗
s . This gives

l∗s
ηb

= Cs = π
√
6Cb. (4.16)

From the definitions of the Reynolds and Schmidt numbers we have

l∗s
L0

= Re−3/4Sc−1/ps . (4.17)

The physical Schmidt number corresponding to Sc = (l∗/l∗s)
ps is given by

Ŝc =

(
η

ηs

)ps

=

(
Cs

Cη

)ps

Sc. (4.18)

Using Ŝc = ν/D and equation 4.10 then gives an expression for the scalar
diffusivity

D

L2
0/τ0

= C1/3
ϵ Cps−4/3

η C−ps
s Re−1Sc−1. (4.19)

5. Incorporation of Sc dependence into the HiPS flow formulation

5.1. Adaption of the new features to the flow-HiPS framework

The present study focuses on incorporation of Sc dependence into the HiPS
mixing formulation that was introduced in Kerstein (2013). This formulation
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time advances advected scalar fields based on prescribed swap-sampling rates.
An alternative HiPS formulation that instead advances velocity components was
proposed in Kerstein (2013) and has been applied to several representative cases
Kerstein (2013, 2014, 2021). In this flow simulation, the instantaneous flow state
within in each subtree determines the time scale τ of the node at the apex of the
subtree. τ values thus vary from node to node at a given level and all τ values
are time dependent.

The flow-state dependence of τ values is specified much as in the one-
dimensional turbulence (ODT) model (Kerstein 2022; Chen et al. 2024). On this
basis, flow HiPS embodies a more detailed physics representation than mixing
HiPS in the same sense as ODT relative to the LEM (Kerstein 1991).

While LEM has proven widely useful for subgrid mixing closure as well as
standalone studies of nonreacting and reacting turbulent scalar mixing (e.g.,
Zimberg et al. 1998; Echekki 2008; Oevermann et al. 2008), ODT has been
extended by incorporating scalar fields and reaction mechanisms to provide a
more detailed mixing treatment (e.g., Hewson & Kerstein 2001; Lignell et al.
2015; Goshayeshi & Sutherland 2015; Klein et al. 2023). For the same reason,
such extensions of flow HiPS should also be useful. Therefore a brief conceptual
outline of the extension of flow HiPS to incorporate the scalar advection and
mixing phenomenology introduced in the present study is provided. For this
purpose, multiplicative coefficients are omitted. They can be evaluated using
adaptations of the approach introduced in section 4. Additionally, the method
used to convert from discretized levels to a continuum of length scales remains
the same, so it is not discussed further.

This extension requires flow HiPS to be implemented using the extended tree
structure that includes the viscous regime. Now the transition from inertial to
viscous-dissipative phenomenology is no longer prescribed, and instead must be
evaluated on the fly as follows. Along any path downward from the apex of
the tree, the first node whose associated eddy viscosity is less than the kinematic
viscosity is deemed to be viscosity-dominated, so that node and the entire subtree
emanating from it are deemed to have the same τ value as the current value at
the node.

As noted in section 2.4, l∗s is the scale at which molecular and eddy diffusivities
balance, analogous to the inertial-to-viscous transition criterion. Now this crite-
rion for the determination of l∗s is applied on a local instantaneous basis rather
than using the standard evaluation of l∗s based on Kolmogorov phenomenology.
Again, this is determined by following each path downward from the apex until a
node is encountered that satisfies the criterion. Its associated subtree is possibly
or certainly, depending on Sc (see section 3.6), fully homogenized whenever a
swap results in inhomogeneity.

For Sc < 1, this is a precise application of the stated criterion. For Sc > 1,
l∗s is in the viscous range, so there is no size-l∗s eddy whose effective diffusivity
can be compared to the molecular diffusivity. Instead, a time-scale balance is
enforced. The strain rate 1/τ associated with a given viscous-range node is based
on the local instantaneous τ value corresponding to inertial-to-viscous transition
along the unique path from the tree apex to the node. Thus, there is an indirect
eddy-viscosity influence owing to the transition criterion. For the given node, at
some level l, the associated molecular-diffusive time scale is l2/D. Accordingly,
l2/D < τ is the criterion for identifying a node whose associated subtree is
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subject to homogenization with a specified probability whenever it deviates from
homogeneity.
In flow HiPS, neither νT nor DT is known by construction because eddy

frequencies are not hardwired. However, the availability of the velocity field
provides convenient relationships between the model Reynolds number and its
physical counterpart. The ability to incorporate flow geometry leads to flow-
specific Reynolds-number definitions, sometimes multiple definitions for a given
flow configuration, so the model-to-physical Reynolds number conversion will
generally be case-specific. Since molecular transport is a microphysical mechanism
well within the universal range of flow scales, the Schmidt-number conversion
formulated in section 4 should be applicable.

5.2. History effects

An anomaly of event-based representation of turbulent stirring governed by
Poisson sampling of event occurrences is noted in section 3.3.4. The deficiency
of Poisson sampling in this regard is the absence of history effects that might
otherwise constrain the large-deviation statistics of these events. In flow HiPS,
the flow field is the embodiment of the current influence of past history, and future
events are sampled accordingly. To be clear, time advancement of flow HiPS as a
whole is Markovian, but event sampling per se is dependent on the sequence of
earlier events.
The main effect of this dependence is to cluster eddy events in time, potentially

boosting whatever intermittency is inherent in mixing HiPS. The dependence can
also be prescribed so as to limit the degree of clustering and suppress the noted
anomaly.
The history effect in flow HiPS is Lagrangian in that the parcel state at a

given tree location reflects interactions with its surroundings as it executed the
trajectory that culminated in its current placement. This is reminiscent of the
Lagrangian-history direct-interaction approximation (LHDIA) that substantially
improved its antecedent, the DIA, as summarized by Zhao (2021).

6. Discussion and Conclusions

6.1. Model extensions

Hierarchical parcel swapping (HiPS) was originally introduced as a formulation
designed to time advance unity-Sc diffusive scalar fields advected by parametri-
cally specified inertial-range turbulence (Kerstein 2013), extensible to turbulent
flow simulation by introducing a vector velocity field (Kerstein 2013, 2014). Here,
extension to nonunity Sc has been achieved by means of two model extensions.
For Sc > 1, the viscous regime has been incorporated by adopting the time
scale of the smallest turbulent eddies as the advective time scale governing
swap occurrences at all length scales below the inertial range, where such swaps
idealize the viscous-range effects of the smallest inertial-range eddies rather than
(nonexistent) smaller-scale eddies. On this basis, the HiPS tree has been extended
to the Sc-dependent Batchelor scale ηb, at which each pair of adjacent parcels
is mixed as needed to maintain compositional equivalence. For Sc < 1, the
Obukhov-Corrsin scale exceeds the transition scale l∗ from inertial to viscous
flow scaling so mixing has been introduced within the subrange [ηoc, l

∗] of the
inertial range. This generalizes the enforcement of the compositional uniformity
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of parcel pairs to imposition of this requirement on larger subtrees. For any Sc,
the HiPS tree can be extended as far down in scale as desired provided that
compositional uniformity is enforced below scale lb.
These model extensions serve two purposes. First, they are the basis for

assessments and demonstrations of flow and mixing physics that are captured by
the model. Second, they broaden the scope of scientific and practical applications
of the model. Present contributions that fall within the respective categories are
summarized.

6.2. Physics investigations and results

Notably in HiPS, the swaps alone, which are simply displacements of subtrees
within the tree structure, have been shown to capture much of the phenomenology
of parcel-pair dispersion within and across the viscous and inertial ranges. In
particular, it has been shown that the multiplicative stride A of level-to-level
scale breakdown is a physical parameter of the model in addition to its role
as resolution adjustment. For pair dispersion, A controls the relative strengths
of drift of the pair separation to higher values and diffusive broadening of the
ensemble statistics of pair dispersion. For the viscous regime, the choice A = 0.8
has been shown analytically to match the theoretical result of Lundgren (1981)
in this respect. This A value yields substantially better agreement with DNS
results of pair-separation PDF evolution across the viscous and inertial ranges
than the default value A = 0.5. The combination of mechanisms that produces
this outcome has been diagnosed in detail.
The complementary physical and algorithmic roles of A impose a trade-off

that is central to the present study. To span a scale range σ ≫ 1, a HiPS tree
with N + 1 levels is needed where A−N = σ, so N = lnσ/ ln(1/A). Since 2N

parcels reside at the base of a level-(N + 1) tree, the number of parcels scales as
σln 2/ ln(1/A) ≡ σdeff , which defines an effective dimensionality deff = ln 2/ ln(1/A) of
the tree, analogous to the box-counting definition of fractal dimension. A = 0.5 is
conceptually appealing in that it yields deff = 1, which suggests an interpretation
of HiPS as a representation of flow evolution along a line of sight through a
three dimensional flow. This is both computationally efficient and, as previously
shown (Kerstein 2014, 2021), it yields more accurate results than other A values
for canonical planar-symmetric flow configurations. deff = 3 corresponds to A =
2−1/3 ≈ 0.8, a result that is derived in section 3.3.2 from a formally different but
mathematically equivalent perspective. This result reinforces the advantage of
A = 0.8 from a physics perspective, as definitively confirmed by the results shown
in figure 9, while the alternate derivation directly quantifies the commensurately
high computational cost with similar resolution requirements to DNS.
The overall picture that emerges is that there is not a single A value for which

HiPS is physically consistent with all turbulence phenomenology of interest, but
for a wide range of turbulence phenomenology encompassing previous as well as
present analysis and applications of the model, physically consistent behaviors
are obtained based on case-specific A values.
HiPS has been compared in this regard to LEM, which is less abstract in the

sense that it is framed in physical space, albeit in one spatial dimension, rather
than as a tree. The LEM eddy event is a triplet map that, as in HiPS, imposes
multiplicative scale reduction. Both models also impose parcel-pair separation,
but in LEM one such event can unphysically increase pair separation by a large
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multiplicative factor. Consequently, LEM time advancement of P (r) bears much
less resemblance to the physical behavior than HiPS.
This introduces another trade-off that has been noted. On a fully resolved one-

dimensional domain, LEM affordably accommodates accurate molecular trans-
port coupled to chemical kinetics. The fidelity of the current extension of HiPS
relative to LEM in this regard remains to be determined, but the present disper-
sion and mixing results demonstrate that more of the relevant phenomenology is
captured than was originally anticipated in Kerstein (2013).
The computational efficiency of the choice A = 0.5, in conjunction with

previous demonstrations of the predictive performance of the model for this A
value, led its adoption in the present study of mixing properties. The scaling
properties of the various spectral regimes have no intrinsic A dependence, so the
reproduction of the known spectral scalings of the inertial-convective, inertial-
diffusive, and viscous-advective regimes by the extended model is deemed to be
robust.
It is noteworthy that the tail behavior of the PDF of scalar-variance dissipation

is found to be in conformance with the high-Sc theoretical prediction of Chertkov
et al. (1998), which is based on analysis of scalar intermittency induced by non-
intermittent narrowband stochastic advection. This suggests that the associated
phenomenology has a more abstract mathematical foundation than has previously
been recognized. It is especially intriguing that HiPS yields the same tail shape for
Sc = 1, which has been empirically demonstrated but not yet explained beyond
speculative proposals (Chertkov et al. 1998). The HiPS result suggests a new
avenue of investigation of inertial-range scalar intermittency.
This raises the broader question of the HiPS representation of inertial-range

scalar intermittency more generally. A suggestive indication is that LEM has
been shown to reproduce scalar structure-function exponents with reasonable
quantitative accuracy (Kerstein 1991). This has been explained by an analysis
(Kalda & Morozenko 2008) that suggests some commonality with the HiPS
representation of inertial-range phenomenology. It has been suggested that LEM,
and by implication HiPS, might embody a spurious intermittency mechanism for
the case of an imposed mean scalar gradient owing to the Poisson sampling of
event occurrence times (Shraiman & Siggia 1994). (Another anomaly resulting
from Poisson sampling is noted in section 3.3.4.) For this reason, HiPS inertial-
range scalar intermittency is best evaluated using a different flow configuration.
This is beyond the present scope, so it will be addressed elsewhere.

6.3. Capability development for applications

DNS data has been used to calibrate coefficients that relate model scalar power
spectrum amplitudes and transition wavenumbers to their physical counterparts.
This will enable future quantitative application of the model to flow configura-
tions of interest.
The extension to nonunity Sc enables model application to heat transfer with

nonunity Pr and further model extension to reacting flows subject to differential
diffusion effects. For these applications, it remains to be determined whether HiPS
will have overall cost/performance advantages relative to the triplet-map-based
methods LEM and ODT, whose resolution of scalar diffusion in 1D physical space
is costly but provides high fidelity for combustion and related applications Chen
et al. (2024).
The most important future extension of HiPS is incorporation of the newly
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introduced features into flow HiPS (Kerstein 2014, 2021). This has the potential
to remedy a particular anomaly that has been noted, but more importantly, to
broaden the range of flow phenomena that can be amalgamated into a unitary
modeling framework.
A feature that will facilitate the use of HiPS for applied studies is its for-

mal resemblance to existing mixing models. In particular, subgrid-scale mixing
closures of conventional under-resolved three-dimensional flow computations typ-
ically involve a collection of parcels that are mixed either pairwise or with the
notional mean parcel composition (Fox 2003). Pairwise mixing can be based on
random parcel pairings (Curl 1963) or pairing weighted by the similarity of parcel
compositions (Subramaniam & Pope 1998). To the extent that time advancement
of the PDF of parcel compositions is sufficient to close the flow computation, the
role of HiPS would be to introduce turbulence phenomenology into the selection
of parcel pairs to be mixed. Thus, the time-advancement operations need no
modifications other than a different source of the inputs that specify which parcels
should be selected to be mixed. This offers the prospect of a straightforward
remedy for longstanding deficiencies of existing mixing closures (Fox 2003).
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Appendix A. Analysis of the time advancement of the PDF of
parcel-pair separation

To compare equation 3.2 to conventional representations of pair-dispersion statis-
tics, that equation is approximated by treating k as continuous and Taylor
expanding the right-hand side. First, equation 3.2 is multiplied by 2B1−k, giving

2B1−k dPk

dT
= 2BPk−1 − (2 +B)Pk + Pk+1. (A 1)

Substitution of the Taylor expansion Pk±1 = Pk ± dPk

dk

∣∣
k
+ 1

2
d2Pk

dk2

∣∣∣
k
into equa-

tion A1 gives

2B1−k ∂Pk

∂T
= (B − 1)Pk − (2B − 1)

∂Pk

∂k
+

(
B +

1

2

)
∂2Pk

∂k2
. (A 2)

(Note that in the Taylor expansion, the k-space interval ∆k = (k + 1)− k = 1 is
used.) At this point the truncation of the expansion at second order is arbitrary
but its validity is addressed in what follows.
Next, Pk is converted to the more conventional form P (r) where r is the nor-

malized physical-space parcel separation corresponding to level k. The probability
in the k interval ∆k = 1 is Pk ∆k = Pk, which must equal the same probability
expressed as P (r)∆r, where ∆r = r − Ar = (1 − A)r. Then Pk = P (r)∆r/∆k.
As in equation 3.5, the parcel-pair separation is Yk = l∗A3−k. Normalizing this
by Y1, the nondimensional pair separation is r(k) = A1−k = exp[(k− 1) ln(1/A)].
Again treating k as continuous, ∆r/∆k is evaluated as dr/dk = r ln(1/A). On
this basis, P (r) is evaluated as Pk/[r ln(1/A)] for k = 1 + (ln r)/ ln(1/A).
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For nonunity B, equation A2 has no convenient general solution so investi-
gation of inertial-range dispersion will be performed by numerical solution of
equation A1. That equation is specialized for application to the viscous range
by setting B equal to unity, which has the same effect in equation A2 as setting
τk = τ ∗ for all k. Importantly, this decouples B from its definition in terms of A.
The underlying model still depends on A < 1 through the A dependence of the
eventual conversion from k to r. On this basis, equation A2 reduces to

∂Pk

∂T
= −V

∂Pk

∂k
+D

∂2Pk

∂k2
, (A 3)

where V = 1/2 and D = 3/4.
The solution for Pk(T = 0) = δ(k − k0) is

Pk =
1

(4πDT )1/2
exp [(k − k0 − V T )2/(4DT )], (A 4)

which corresponds to log-normally distributed P (r), namely

P (r) =
1

r(4πD̂T )1/2
exp

(
[ln(r/r0)− V̂ T ]2

4D̂T

)
, (A 5)

where r0 = r(k0), V̂ = V ln(1/A), and D̂ = D[ln(1/A)]2, exhibiting the retention
of dependence on A.
For bounded r, as in any computation, the tails of the PDF are truncated

and the solution between the bounds deviates from log-normal form. For these
reasons, computed PDFs P (r) must be scaled by a time dependent normalization
factor.
Lundgren (1981) likewise obtains log-normally distributed P (r) for the viscous

range, but his theory yields a different differential equation whose solution gives
the result V̂ /D̂ = 3, while the HiPS value is 2/[3 ln(1/A)]. The Lundgren value
is matched for A = exp(−2/9) = 0.8. The default value A = 0.5 corresponds to

a value of V̂ /D̂ that is lower than the Lundgren value, implying higher diffusive
spreading of the PDF relative to its drift toward large scales.
In view of the demonstration in section 3.3.2 that A, evaluated as 2−1/3

but fortuitously within 1% of 0.8, is the physically most realistic value from
a dimensional viewpoint, all available evidence indicates that A = 0.8 is the
physically most justified choice.
The Lundgren (1981) viscous-range result holds for all spatial dimensions. This

could be related to the lack of A dependence of Pk stemming from substitution
of B = 1 into equation A1, highlighting the distinction between the internal
consistency of HiPS and the issues that arise when transforming to physical space.
Regarding the accuracy of the Taylor-series truncation in equation A2, the

discussion of figure 8 highlights the close agreement between the analytically
derived PDF for the viscous range and the exact numerical result. A more
definitive test is comparison of the equilibrium PDF shape obtained from the
specialization of equation A2 to stationarity and the exact equilibrium result,
equation 3.3. (To verify that stationarity corresponds to equilibrium, note that
the exact equilibrium result satisfies equation A1 with the left-hand side set equal
to zero.) For the viscous range, substitution of B = 1 and the ansatz Pk ∝ qk

into equation A2 yields the stationary solution q = exp(2/3) = 1.95, indicating
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that, at least for this regime, the Taylor-series truncation is fairly accurate albeit
inexact.
Relaxation of the restriction B = 1 yields a B-dependent stationary solution

of equation A2, with q = 2 only for an A value close to 0.6. For the A values
of interest, the deviations from the exact stationary solution are not large, but
this is ultimately immaterial. The only tangible present benefit of equation A2
is that its specialization to equation A5 transparently exhibits the dispersion
phenomenology in a manner that led to the parameter assignment A = 0.8 and
thus to predictive capability across scaling regimes.
It is instructive to compare the foregoing viscous-range results to LEM behavior

in this regime. As in HiPS, advection is represented in LEM by instantaneous
rearrangements of parcel locations, but in LEM they are applied along a one-
dimensional domain. Each of these ‘triplet maps’ applies threefold compression
to a chosen size-ℓ interval, fills the interval with three copies of this compressed
image, and flips the middle image to maintain the spatial continuity of parcel
property profiles. ℓ is assumed to be the same for all maps, where ℓ can be
viewed as the smallest of a range of map sizes extending into the inertial range,
or equivalently as representative of the full range of map sizes, because the results
of interest are unaffected by the choice of interpretation.
As above, the initial condition P (r, t = 0) = δ(r− r0) is assumed where r0 ≪ ℓ.

The latter condition assures that it is rare for only one of the two parcels to reside
in a size-ℓ mapped interval. Then the leading-order case is that both parcels are
mapped. Viewing the spatially continuous map as the continuum limit of spatially
discrete maps (permutations) with successively greater spatial refinement, it has
been shown (Fistler et al. 2020) that the mathematically consistent mapping
procedure is to randomly and independently assign each of the parcels, now
treated as marker points, to one of the three compressed images.
Accordingly, the markers are assigned to the same image with probability 1/3,

in which case their separation is reduced by a factor of three. Otherwise their
separation is typically increased to order ℓ, in which case their subsequent motions
are deemed to be irrelevant to the scale-r0 time advancement of P (r, t). Then for
order-r0 pair separation, r is subject to successive three-fold reductions such that
r(t) = 3−n(t)r0, where the statistics of the number n(t) of map applications during
[0, t] determines P (r, t) in [0, r0]. The argument r is thus discretized into levels
3−nr0 so P (r) (suppressing t) is discretized as Pn, which obeys

dPn

dT
=

1

3
Pn−1 − Pn. (A 6)

Here, the rate of map occurrences is absorbed into the normalized time T and the
coefficient 1/3 reflects the 2/3 probability that a map results in a pair separation
beyond the range of interest. This causes a decrease in time of

∑∞
n=0 P (n), where

this sum will be used to normalize P (n) to unity within the range of interest.
The solution Pn = 3−ne−T yields the time-invariant normalized form Pn =

2 · 3−n−1, corresponding to Pr = (2r/3r0) in terms of the discrete set of pair
separations r. Converting to continuous r based on dn/dr = −r0/(r ln 3) gives
constant P (r), which is the dimensionally correct equilibrium scaling for a one-
dimensional domain but is not realizable in one dimension because it is not
normalizable on an unbounded r interval.
Separation of variables does not yield a transient solution to the initial-value

problem of interest. To formally exhibit the phenomenology, equation A6 is
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Taylor expanded to obtain

∂Pn

∂T
=

1

6

∂2Pn

∂n2
− 1

3

∂Pn

∂n
− 2

3
Pn. (A 7)

The positive second derivative indicates diffusive spreading that reflects the
ensemble statistics of mapping occurrences. The negative first derivative indicates
drift toward larger n, hence smaller r, reflecting the monotonically decreasing
separation of markers with initial separation r0 ≪ ℓ. The rightmost term reflects
strongly nonlocal jumps to r of order ℓ, here formalized as a loss term because
these marker pairs are transferred away from the space-time regime relevant to
time advancement initialized with separation r0.
These considerations merely formalize the consequences of the anomaly that

the effects of a triplet map at a much smaller scale than its size are qualitatively
correct in that the map induces both compressive and extensive strain, but the
extensive strain as embodied in the multiplicatively large increases of particle
separation grossly exaggerates the scale-r0 extensive-strain effect of a scale-ℓ
eddy. Relative to LEM, HiPS is physically more accurate in this regard because
the swap-induced multiplicative change of particle separation is of order unity
regarless of whether the separation increases or decreases.
In other respects, such as mixing advancement based on fully resolved gradient-

driven diffusive fluxes using the true molecular-transport coefficients, LEM is
more accurate than HiPS. On balance, there is a trade-off between the two
formulations, with the preference between them dependent on the specific needs
of individual applications.

Appendix B. Analysis of mixing in a three-level tree

The HiPS flux, production, and dissipation are evaluated directly for a three-
level tree. Refer to table A1. Let the four parcels have initial values (0, 0),
(1, 1), where parentheses indicate half-trees, giving ∆ϕ0 = 1. Only level-0
swaps are possible. With equal likelihood, a swap is either jump-periodic (JP),
corresponding to flux between hypothetically adjacent domain boundaries, or
internal (I), corresponding to flux across the domain center. As in the usual
representation of an imposed mean scalar gradient, a JP swap enforces jump-
periodicity by adding ±2 to the scalar value of each parcel deemed to exit and
re-enter the domain, where the direction of displacement determines the sign of
this adjustment. We can ignore permutations within a half-tree without loss of
generality.
This three-level model implementation has distinctive features that do not

apply to cases with four or more levels. Each eddy event produces one of two
distinct final system states: (1/2, 1/2), (1/2, 1/2), or (-1/2, -1/2), (3/2), 3/2),
which are uniform and nonuniform, respectively. Starting from either of the two
states, the system state is uniform after a type-I event, and nonuniform after a
type-JP event. The half-tree mean values ⟨ϕ⟩, and variances ⟨ϕ′2⟩ after each of
swap and mixing operations comprising the eddy event are shown in the table.
⟨ϕ′2⟩ is computed as the mean square difference between the parcel values in the
half-tree and the imposed ensemble mean value (0 or 1) in the half-tree. An eddy
event preceded by an eddy event of the same type produces no state change.
In effect, the system evolves only when two events of different type occur in
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Table A1: HiPS state evolution for a three-level tree. Parentheses group parcel
values in half-trees. EE refers to an eddy event involving a swap of type

jump-periodic (JP) or internal (I) followed by mixing of parcel pairs. Subscripts
on half-tree averages designate the different stages of evolution.

Initial state (0,0), (1,1)

⟨ϕ⟩0 0 1

⟨ϕ′2⟩0 0 0

First EE: I or JP I (applied to initial state) JP (applied to initial state)

After swap (0, 1), (0, 1) (-1, 0), (1, 2)

After mixing ( 1
2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
)

⟨ϕ⟩1 1
2

1
2

− 1
2

3
2

⟨ϕ′2⟩1 1
4

1
4

1
4

1
4

Next EE: I or JP JP I JP I

After swap (− 3
2
, 1

2
), ( 1

2
, 5

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
) (− 1

2
, 3

2
), (− 1

2
, 3

2
)

⟨ϕ⟩2 − 1
2

3
2

1
2

1
2

− 1
2

3
2

1
2

1
2

⟨ϕ′2⟩2 5
4

5
4

1
4

1
4

1
4

1
4

5
4

5
4

After mixing (− 1
2
, − 1

2
), ( 3

2
, 3

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
)

⟨ϕ⟩3 − 1
2

3
2

1
2

1
2

− 1
2

3
2

1
2

1
2

⟨ϕ′2⟩3 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⟨ϕ⟩3 − ⟨ϕ⟩1 -1 1 0 0 0 0 1 -1

⟨ϕ′2⟩2 − ⟨ϕ′2⟩1 1 1 0 0 0 0 1 1

⟨ϕ′2⟩3 − ⟨ϕ′2⟩2 -1 -1 0 0 0 0 -1 -1

Repeat, I or JP EE . . .

succession, so the evolution consists of back-and-forth switches from one state to
the other.
Consider the flux through the domain center, arising from internal swaps. These

result in ⟨ϕ⟩3 − ⟨ϕ⟩1 equal to 0 or -1 in the right half-tree, and 0 or 1 in the
left half-tree. The average time between internal swaps is 2τ0, so the average
d(⟨ϕ⟩3 − ⟨ϕ⟩1)/dt in the right half-tree is −1/(4τ0). Using this in equation 3.11
recovers the nondomensional flux of −1/8, equation 3.10.
The production P is the average rate of change of variance due to swaps,
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which happen at mean rate 1/τ0. This production is given by the mean (over
the four columns of table A1) of (⟨ϕ′2⟩2−⟨ϕ′2⟩1)/τ0 = 1/(2τ0), which recovers the
nondimensional production of 1/2, equation 3.13.
Similarly, the mean dissipation rate ⟨χ⟩ is the negative of the average rate of

change of variance due to mixing occurrences, which happen at mean rate 1/τ0.
This dissipation is given by the mean (over the four columns of table A1) of
−(⟨ϕ′2⟩3 − ⟨ϕ′2⟩2)/τ0 = 1/(2τ0), which recovers the nondimensional dissipation
value 1/2, equation 3.14.
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