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Abstract

ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow
configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles
are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions
of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle
diameter. Dispersion data at long times of flight for the nozzle diameter (7mm), particle diameters (60 and 90 µm),
and Reynolds numbers (10000 to 30000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of
the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method
is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three
particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and
particle-eddy interaction in jet flow.
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1. Introduction

Particle and droplet dispersion in turbulent jet flows is
an essential part of many important industrial processes.
Typical examples include the dispersion of liquid fuel droplets
in gas combustors and the mixing of coal particles by the
injection jets of coal-fired power plants. The dispersion
of the particles largely determines the efficiency and the
stability of these processes.

Many computational studies on gas-particle turbulent
jets have been performed. Direct numerical simulations
(DNS) have been used to study gas-particle jets at rela-
tively low Reynolds numbers [5, 20]. However, DNS for
a high Reynolds number flow is not computationally effi-
cient. Therefore, simulation approaches are required that
do not resolve all flow scales in three dimensions. Many
gas-particle flows have been studied in which the subgrid-
scale turbulence is modeled using large eddy simulation
(LES) [39, 1]. LES provides good means to capture un-
steady physical features in the turbulence. The accuracy
and the reliability of LES predictions depend on several
factors, such as the accurate modeling of the subgrid-scale
phase interactions.

A promising alternative approach is the one-dimensional
turbulence (ODT) model, which is able to resolve a full
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range of length scales on a one-dimensional domain that
is evolved at the finest time scales [16, 18]. ODT has
been applied to many different homogeneous and shear-
dominating reacting [8, 12, 13, 26, 25, 21] and nonreact-
ing [16, 18, 2, 34] flows including homogeneous turbulence,
channel flow, jets, mixing layers, buoyant plumes, and wall
fires.

Schmidt et al. [31] extended the ODT model to the pre-
diction of particle-velocity statistics in turbulent channel
flow. Punati [25], and Goshayeshi and Sutherland [10, 9]
studied coal combustion and particle laden jets using ODT
(using a version of the Type-C model noted below). In our
previous study, one version of the ODT multiphase interac-
tion model using an instantaneous (referred to as Type-I)
particle-eddy interaction (PEI) model was presented to in-
vestigate particle transport and crossing-trajectory effects
in homogeneous turbulence [34]. Here, we extend this pre-
vious ODT study to shear flows and present two new PEI
models to analyze the behavior of individual particles in
jets at high Reynolds numbers (Re). One of the models
applies continuous PEI (referred to as Type-C) and the
other combines instantaneous and continuous interaction
features (referred to as Type-IC).

The remainder of this paper is organized as follow:
first, a summary description of ODT is presented, with
details of of the PEI models given. This is followed by
a presentation and discussion of the results of the Type-I,
-C and -IC models, including comparisons to experimental
results. Sensitivity of results to the single particle model
parameter is discussed, and summary and concluding re-
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marks are given.

2. Numerical description

2.1. ODT model

One-dimensional turbulence (ODT) is a numerical method
to generate realizations of turbulent flows using a stochas-
tic model of the turbulent cascade on a one-dimensional
domain [16]. The one-dimensional domain is formulated in
the direction of primary velocity gradients and on which
the governing equations for, e.g., mass, momentum, en-
ergy, and species conservation are solved. Most ODT ap-
plications, including that presented here, use Cartesian co-
ordinates in which the y, x and z coordinates are the ODT
domain-aligned, streamwise (direction for flow evolution),
and spanwise directions, respectively.

The ODT model consists of two main mechanisms: dif-
fusive advancement, and advective eddy events. The diffu-
sive evolution on the 1D domain is governed by transport
equations (described below) that omit the nonlinear advec-
tive terms, which are modeled by the eddy events. These
diffusive equations dissipate velocity fluctuations and ki-
netic energy, though this process is only significant at dif-
fusive scales, and the eddy events model the cascade of
fluctuations to the dissipative scales. In general flows, non-
linear advection describes a vortex-stretching process that
acts in three dimensions to transfer fluctuations to higher
wave numbers and is costly to predict. In order to describe
these nonlinear advective terms, ODT introduces the con-
cept of the so-called “triplet map” that transfers fluctu-
ations to higher wave numbers during eddy events. The
triplet maps that make up the eddy events in ODT occur
instantaneously. The rate of occurrence of this transfer by
ODT eddy events is determined through a stochastic sam-
pling of the evolving velocity field through a measure of the
shear energy that is a function of the location on the do-
main and the eddy length scale (wavenumber). There are
two approaches to evolve the ODT domain: (i) temporal
evolution where each ODT realization is parameterized by
(y, t) and represents a (possibly Lagrangian) time history,
and (ii) spatial evolution, where each ODT realization is
parameterized by (y, x). Even in predicting spatially de-
veloping flows like the jet in this case, most ODT simu-
lations have been conducted using temporal evolution as-
suming a Lagrangian evolution of the flow domain to map
results to the spatial evolution [12].

2.1.1. Diffusive advancement

In the Lagrangian frame of reference, choosing (y, t)
as independent variables, the governing equations are de-
rived from the Reynolds transport theorem and advanced
in time along the ODT line [21]. Since there is no mass
source term, no non-convection mass flux, and uniform
properties inside the grid control volumes in one dimen-
sion, the finite-volume equation applied on the grid cells

for the continuity equation is

ρ4y = constant, (1)

where the density ρ is constant for the nonreacting flow
considered here. The diffusive advancement evolves scalar
equations of momentum (per mass) component Ui using a
conservative finite volume method written here for a given
cell:

dUi
dt

= − 1

ρ4y
(σi,e − σi,w) , (2)

where σi,j is the viscous stress. The subscripts e and w
represent east and west faces of the control volume. The
viscous stresses for the three velocity components are rep-
resented as

σi = −µdUi
dy

, (3)

where µ is viscosity. The spatial derivative appearing in
this equation is evaluated at cell faces using a finite differ-
ence approximation between the two neighboring cells.

2.1.2. Eddy events

Turbulence is characterized by a three-dimensional vor-
tex stretching process that is modeled in ODT through a
representative sequence of eddy events as introduced at
the beginning of this section. This model has two key
components, the triplet-map representation of the length-
scale cascade and the model for the rate of triplet maps.
Turbulent eddies are sampled randomly on the domain as
a function of the eddy location, represented by their left
bound, y0, and by their size, l, with the triplet map occur-
ring over the region [y0, y0 + l] for the given sample. The
triplet map spatially compresses the fluid property profiles
within [y0, y0 + l] by a factor of three. The original profiles
are replaced with three copies of the compressed profiles,
with the middle copy spatially inverted. This mapping is
described by

f (y) = y0 +


3 (y − y0) if y0 ≤ y ≤ y0 + 1

3 l,

2l − 3 (y − y0) if y0 + 1
3 l ≤ y ≤ y0 + 2

3 l,

3 (y − y0)− 2l if y0 + 2
3 l ≤ y ≤ y0 + l,

y − y0 otherwise.

(4)
where f (y) and y are the original fluid location and the
post-triplet-map location, respectively. The fluid outside
[y0, y0 + l] is unaffected. The triplet map is measure pre-
serving and all integral properties (e.g., mass, momentum,
and energy) or moments thereof are constant during a
triplet map. Specifically, the kinetic energy is conserved,
which is a desirable property because eddy events physi-
cally model the inviscid advection process. Immediately
after the triplet map, kernel transformations are intro-
duced that redistribute energy among the velocity com-
ponents [37]. The transformations are meant to model the
velocity randomization and so-called return to isotropy ef-
fect in turbulent flows. The kernel can be considered as a
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wave function that adds or subtracts energy from the eddy
based on the amplitude of the wave. An eddy event maps
the velocity component i as follows:

Ui (y) −→ Ui (f (y)) + ciK (y) , (5)

where the kernel K (y) ≡ y − f (y) is the displacement in-
duced by the triplet map and integrates to zero over the
eddy interval. ci is the kernel coefficient of K (y) and is
specified to ensure conservation of energy among momen-
tum components. This form is written for constant density
flows, as studied here. A variable density formulation is
also available [2].

The procedure to sample and accept an eddy follows
that described in [21], and a summary description is pro-
vided here. The eddy rate density for an eddy occurrence
at location y0 and length l is denoted as λe(y0, l, t) and
is dimensionally τ−1e l−2 where τe is an eddy time scale
given in Eq. 10. The rate of all eddies at a given time is
Λ(t) =

∫∫
λe(y0, l, t)dy0dl, and the eddy PDF is defined

as P (y0, l, t) = λ(y0, l, t)/Λ(t). (In the following, the y0,
l, and t functional dependecies will be presumed.) Ide-
ally, eddies would be sampled from this PDF, with oc-
currence times sampled with Poisson statistics with mean
rate Λ. However, this is inconvenient and computation-
ally expensive since the two dimensional eddy distribu-
tion would have to be constructed at each timestep, with
a correspondingly complex sampling procedure involving
numerical inversion. Instead, we use a thinning method
[19] coupled with the rejection method [24]. In a thinning
process, we can sample in time as a Poisson process with
mean rate αΛ where α > 1, and then accept eddies with
probability Pa = Λ/αΛ. In the rejection method, rather
than sample from the unknown P , we sample eddies from
a presumed distribution P̃ , and accept with probability
Pa = P/βP̃ , where β is some constant (or in general, some
function) so that Pa < 1 (i.e., β > 1). Together, these give

Pa =
Λ

αΛ

P

βP̃
. (6)

Now, take ∆ts = 1/αΛ, insert ΛP = λ = 1/τel
2, and

absorb 1/β into ∆ts so that ∆ts/β ⇒ ∆ts (since α > 1
and β > 1 are arbitrary), to give

Pa =
∆ts

τel2P̃
. (7)

Note that 1/τel
2 in Eq. 7 gives the actual eddy rate de-

termined from the sampled instantaneous velocity field as
given below in Eq. 10. choice of P̃ may affect the efficiency,
but not the accuracy. We use

P0(y0, l) = g(y0)f(l). (8)

The eddy location distribution, g(y0), is taken to be uni-
form over the domain while the eddy size distribution, f(l),
is assumed to be [21]

f(l) = Al exp(−2l̃/l), (9)

where l̃ is the most probable eddy size (typically 0.015
times the domain length) and Al is the PDF normalization
constant. Eddy occurrence times are sampled as a Poisson
process with mean rate ∆ts, with the eddy size and loca-
tion sampled from f(l) and g(y0). Each candidate eddy is
accepted with probability Pa given above. ∆ts is adjusted
during the simulation to ensure that the average Pa is of
order 0.02.

The eddy time scale τe is obtained using a measure
of the available energy at wavelength l. In the present
constant density work (without buoyant or other forms of
energy), τe is computed using scaling arguments to relate
to the available kinetic energy, which is given by Ekin =
ρ
(
U2
K + V 2

K +W 2
K

)
[16],

1

τe
= C

√
2

ρl2
(Ekin − ZEvp). (10)

To obtain Ekin the velocities are integrated across the ker-
nel function K (y) as

UK =
1

l2

∫ y0+1

y0

U(f(y))K(y)dy. (11)

In Eq. 10, Evp is included as a viscous penalty to restrict
unphysically small eddies,

Evp = ρν/l, (12)

where ν is the kinematic viscosity of the fluid.
Beyond the basic elements of Eq. 11 as a measure of

velocity fluctuations, the form of Eq. 11 is not fixed, and
other forms have been used [16]. In Eq. 10, C is a constant
model parameter relating the kinetic energy formed from
Eq. 11 to the eddy time scale in Eq. 10. C directly scales
the probability of an eddy occuring as per Eq. 7. Simi-
larly, a constant, Z, is introduced for the viscous energy
dissipation, Evp. C plays an important role in the rate for
the turbulent cascade and the flow evolution is sensitive to
it, as the rate of evolution of the flow is directly propor-
tional to C. Z is provided more as a numerical expedient
to reduce the occurrence of sub-Kolmogorov scale eddies;
these small eddies affect transport less than the viscous
evolution. A maximum value of Z will exist above which
there will be an unphysical buildup of fluctuations above
the Kolmogorov scale that is visible in spectra (not shown
here).

In unbounded systems, like jets, eddy events may re-
sult in the occurrence of unphysically large eddies that
adversely affect the overall mixing, and a mechanism for
suppressing such eddies is required. This is not normally
needed for bounded systems (such as channel flows), or
other cases (such as stratification) that otherwise limit the
mixing. There are several mechanisms of large eddy sup-
pression that have been developed [12, 13, 18, 2]. The
method favored for jet flows is an elapsed time method in
which the eddy time scale τe can be compared with the
simulation elapsed time t; eddy events are allowed only
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when t ≥ βlesτe, where βles is a model parameter. βles
has a similar (but inverse) effect of C [12]: larger values of
βles suppress larger eddies, and delay the flow evolution.

In summary, there are three ODT parameters C, Z,
and βles that control the evolution of the jet. C is the
eddy rate parameter and scales the time evolution of the
jet. Z suppresses unphysically small eddies and the overall
flow is insensitive to this parameter. βles suppresses large
eddies and has a similar, but inverse, effect as C. In the
next section, we discuss the Lagrangian particle model,
where an additional parameter βp is introduced.

2.2. Lagrangian particle model

The velocity and trajectory of particles are described
by a Lagrangian approach in this study. Like the ODT
treatment of the continuous fluid phase, the action of tur-
bulent eddies is handled in a special manner, referred to
here as the particle-eddy interaction (PEI), as compared
with diffusive processes characterized by the standard ap-
proaches described in Sec. 2.2.1. The triplet map is im-
plemented as an instantaneous process, and the action of
the triplet map on the particle can be treated either as
an instantaneous or continuous process as observed in the
flow evolution coordinate. The motion of the particles is
traced as they interact with a random succession of tur-
bulent eddy motions, each of which represents a Type-
I (referred to as instantaneous), Type-C (referred to as
continuous), or Type-IC (referred to as instantaneous and
continuous) interaction between a particle and a triplet
map. In the Type-I model, the PEI is represented as an
instantaneous change of the particle position and veloc-
ity in the same manner that the triplet-map itself is an
instantaneous event. In the Type-C model, the PEI oc-
curs during the flow evolution by mapping the equivalent
triplet-map space-time influence to the flow evolution. In
the Type-IC model, the particles undergo the Type-I PEI
when they are in the eddy region at the time of the eddy
occurrence, and experience the Type-C PEI if they are
initially outside the eddy, but move into the eddy region
during the flow evolution. Dispersive transport property
statistics of particles are obtained by computing a statisti-
cally significant ensemble of flow realizations and particle
trajectories. Schmidt [28] proposed several particle mod-
els that are similar in nature to the ones here, and imple-
mented the Type-I model to study particle behavior in a
different context [31, 30]. A version of the Type-C model
was used by Punati [25] and by Goshayeshi and Sutherland
[10, 9]. In this section, we summarize the implementation
of the models, and more importantly, discuss and compare
different types of particle-eddy interactions.

A particle-eddy interaction occurs when both the par-
ticle and the triplet map occupy the same space-time. To
predict the interaction, a finite temporal interval and spa-
tially cubic region, consistent with turbulence isotropy, is
assumed for each eddy based on the eddy time and length
scale, τe and l. This spatial-temporal region is referred to
as the eddy box. Within the eddy box, the particle evolves

in the x, y, and z dimensions as described in the following
subsections, and the PEI ends when the particle leaves the
idealized eddy box or when the eddy lifetime has passed.
The eddy lifetime,

te = βpτe (y, l; t) , (13)

is related to the eddy time scale, τe(y, l; t), but these quan-
tities should not be expected to be equal; the proportion-
ality between these times is represented by the parameter
βp.

In many flows, the particles typically leave the box at
the end of the eddy lifetime, te, but if there is significant
relative motion between particles and eddies, the parti-
cles will depart spatially. This latter spatial crossing of
the eddy boundary is referred to in the literature as the
crossing-trajectory effect [7]. This use of an eddy length
and lifetime to predict the eddy influence on the particles is
common to the stochastic approaches. In the ODT model,
the fluid evolution results in a full spectrum of dynamic
and flow-dependent eddy scales, as opposed to only pre-
dicting integral scale eddies (or scales sampled from some
static eddy distribution). The selection of the eddy life-
time in the ODT formulation is equivalent to the selection
in other modeling approaches of te, and a proportionality
appears there between the integral turbulent time scale
evaluated from, for example, the turbulent kinetic energy
and its dissipation rate. In approaches we will refer to as
discontinuous random walk, an eddy-velocity fluctuation
is selected to act for an eddy lifetime [40, 11, 33]. Another
class of models referred to as continuous random walk ap-
proaches sample fluctuating velocity increments [4, 41, 23].

2.2.1. Particle evolution equations

For the simulation of particles, two assumptions about
the behavior of particles are made: (i) all particles are
rigid spheres with identical diameter dp and density ρp; (ii)
only the drag and gravity forces of particles are considered
because the ratio of the particle-to-fluid material density
is high.

Under the above conditions, the momentum equation
of a single particle at position r with velocity u at time t
can be described using Newton’s second law:

dri
dt

= Up,i, (14)

dUp,i
dt

= −Up,i − Ug,i
τp

f + gi, (15)

where the subscripts p and g represent particle and gas, re-
spectively. The equation shows that the rate of momentum
change is equal to the sum of external forces on the parti-
cle. The first and second terms on the right-hand side are
the drag force between the particle and surrounding fluid
and the gravitational force on the particle, respectively.
The response time τp of a particle with mass mp in the
fluid of viscosity µ, based on Stokes flow, is given by

τp =
mpCc
3πdpµ

. (16)
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Clift et al. [6] suggested that for a particle slip-velocity
Reynolds number Rep < 200, which is true for most prac-
tical dilute flow systems, the nonlinear correction factor f
needs to be added,

f = 1 + 0.15Re0.687p , (17)

where Rep = (ρg|~vp−~vg|dp)/µ. Also the Cunningham slip
factor Cc with mean free path of fluid λ is

Cc = 1 +
λ

rp

[
1.257 + 0.4 exp

(
−1.1

rp
λ

)]
, (18)

where rp is the particle diameter.
All three components of the particle momentum are

computed using the above equations, but the particles are
constrained to the line. The off-line velocity components
are used in the PEI models discussed below. Constraining
the particles to the line is a limitation of the ODT model.

2.2.2. Type-I particle model

During the ODT diffusive advancement, Eq. (15) is
solved for the three components of the particle velocity
using the local components of the ODT gas velocity in the
x and z directions, and zero for the ODT line-directed (y)
gas velocity (since y motions are governed by eddy events).
That is, dispersion in directions other than the ODT-line
direction naturally occur during the diffusive advancement
described in Sec. 2.1.1.

The interaction between a particle and an ODT eddy
event is defined as both the particle and the triplet map
occupying the same space-time. For the Type-I PEI, the
particle-eddy interaction is instantaneous in the simulation
advancement time t. However, to capture the interaction,
a finite temporal interval and cubic spatial region of each
eddy (of side-length l) is assumed based on its own time
and length scale. The interaction between particles and
an eddy evolves in three directions governed by the x, y
and z components of the above modified Stokes’ law. The
interaction is chosen to have the same length scale in all
three directions, though other modeling choices could be
appropriate. The particle-eddy interaction ends when the
particle leaves the idealized eddy or when the eddy life-
time has passed, whichever comes first. The ODT eddy
events affect only the line-directed particle velocity and
position. However, the particle drag law is solved in all
three directions in order to determine the interaction time
of a particle with an eddy. A new temporal coordinate
is needed which is called the interaction time coordinate,
θ, which describes how long the particle interacts with
the eddy. Simply speaking, the particle-eddy interaction
is instantaneous in real time coordinate t while it exists
for finite time in interaction time coordinate θ. Figure 1
shows (among other things) the eddy effect in the interac-
tion time coordinate (left) and real time coordinate (right)
in the y direction. When θixn > te, the interaction ceases
even if the particles are still in the eddy box, where θixn
is interaction time between the particles and eddy. When

Figure 1: Schematic diagram of the particle-eddy interactions in the
interaction and real time coordinates. The figure also illustrates
the need to treat the so-called double counting effect. Dashed lines
represent the trajectory of a ballistic particle. The rectangular box
(left) and vertical line (right) represent eddy events. (Adapted from
Schmidt et al. [31])

θixn ≤ te, the particles may exit the eddy box by reaching
the boundaries of the box.

Eddy velocities in the x, y, and z directions are defined
to describe the drag force between the particle and the
eddy so that particle y positions and velocities after the
interaction may be determined,

Ue = Ug, (19)

Ve =
4YTM
te

, (20)

We = Wg. (21)

Eddy velocities Ue and We are the respective x and z ODT
velocity components at the particle location. The eddy
velocity Ve in the y direction is the turnover velocity of
a fluid parcel containing the particles during the triplet
map. 4YTM is the displacement of a notional Lagrangian
fluid particle by the triplet map at the particle location,
as described in the following paragraphs.

As shown in Fig. 2 of the triplet mapping operation,
there are three distinct displacements of a given fluid el-
ement that correspond to its three subdivisions. Unlike
the fluid elements, the particles cannot be subdivided,
which requires the determination of which of the three
distinct fluid displacements to use in Eq. 20. There are
two ways to make this determination. One is to use the
discrete implementation of the triplet map (as has been
done in some previous ODT implementations) to assign
a unique displacement of the fluid that contains the par-
ticles. (The present ODT uses a continuous implemen-
tation of the triplet map on an adaptive computational
grid.) A disadvantage of this discrete approach is that
the first and last fluid cells of the eddy subdivisions are
not moved and 4YTM = 0 in Eq. 20. Neglecting small
displacement near eddy endpoints has a disproportionate
impact near walls, where these small displacements can be
the dominant mechanism [28]. This undesired affect could
be minimized by using high spatial resolution, but that
significantly increases computational costs.
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Figure 2: Illustration of the triplet map implementation. Jagged
lines indicate eddy edges; solid lines are cell boundaries.

Another more cost-effective approach is a random se-
lection procedure. In the infinitely high-resolution case,
all the flow properties including particle distribution are
statistically uniform at the fine scale. Any location class of
particles is equally distributed among the eddy fluid cells
that correspond to three distinct field subdivisions of given
fluid element. This indicates that a given particle can be
statistically localized to any of the three pre-mapped sub-
divisions with equal probabilities. Therefore, a random
selection of one of the three fluid parcels for the particle
environment is used in this work. The procedure is illus-
trated in Fig. 2 by the open and filled circles that denote
notional Lagrangian fluid elements. The notional fluid el-
ements are positioned on the triplet map on the region of
the discretized ODT domain. The letters a, b, and c repre-
sent the values of fluid profiles in the given cells and serve
to identify the cells. After the triplet map, the original
profile (a, b, c) becomes (a, b, c; c, b, a; a, b, c). The original
scalar profile is compressed spatially by a factor of three,
and a copy is placed on the first and last third of the eddy
domain, whereas the profile is spatially inverted for the
middle third. The notional Lagrangian fluid element in a
cell with a given fluid property (e.g., a, b, or c) will be
mapped to a random one of the three post-mapped loca-
tions with the same fluid property. This is shown in the
figure as the open circle in the cell b is moved to the cell
b1 (though it could have been cell b2 or b3), whereas the
filled circle in cell c is mapped to cell c2 (though it could
have been cell c1 or c3).

With eddy velocities specified as in Eqs. (19-21), the
drag law is integrated to determine the particle-eddy in-
teration time. The particle is initially located in the center
of the eddy box in the off-line directions, and the eddy box
is advected with the x and z eddy-velocity components.

Schmidt et al. [31] found that since the particle trans-
port is implemented instantaneously, but the momentum
equation of particles is integrated for the interaction time,
the concurrent diffusive advancement would result in a
double integration effect. To elaborate this effect, consider
a particle that has infinitely large inertia. The particle will
not be affected by the eddy. However, as Fig. 1 shows, the
double integration effect will produce the shift of the parti-

Trajectory 
with 
interaction 

Interaction time θ  

Y 

Trajectory without 
interaction 

Vp
old

Vp
i

Vp
n

Δyp

Real time t 

Y 

Vp
old

Δyp Vp
new

Figure 3: New position and velocity of a particle in the interaction
time coordinate (left) and real time coordinate (right) after a Type-I
particle-eddy interaction. (Adapted from Schmidt [31].)

cle velocity and position, which violates physical behavior.
To avoid this, the particle velocity V newp and position ynewp

resulting from the particle-eddy interaction are computed
by taking the difference of the integration solution of the
momentum equation with and without the eddy velocity.
This is illustrated schematically in Fig. 3. That is,

V newp = 4Vp = V ip (θixn)− V np (θixn) , (22)

ynewp = yoldp +4yp = yoldp + yip (θixn)− ynp (θixn) , (23)

where superscript i and n indicate with and without the ef-
fect of the eddy, respectively. The result is a particle-eddy
interaction with the expected behavior in both the tracer
particle limit (particles stay with the fluid) and in the
ballistic limit (particles are no displaced by eddy events)
avoiding the potential of artificial dispersion suggested in
Fig. 1.

2.2.3. Type-C particle model

The Type-I PEI model described above leads to an in-
stantaneous displacement and velocity change of the par-
ticles at the moment of the occurrence of the triplet map.
The Type-C PEI model differs from the Type-I model in
that the PEI occurs continuously during the continuous
diffusive process. While the eddies occur instantaneously,
the effect of the eddies on the particles is implemented over
a finite duration during the ODT diffusive advancement.
As in the Type-I interaction, each eddy is modeled with
a cubical eddy box that exists spatially over the domain
[y0, y0 + l] and temporally over the eddy lifetime te. Un-
like the Type-I eddy, the interaction is not implemented
instantaneously, but rather the eddy velocity is mapped to
a spatial-temporal eddy box that starts at and continues
after the eddy event. Each eddy box is advected in the
off-line directions, and the advection velocity is taken as
the average local fluid velocity in the box. The crossing-
trajectory effect is captured as the particles move relative
to the eddy.

The line-directed eddy velocity is taken as±(2l/
√

27)/βpτe
based on the root mean square displacement of fluid par-
ticles in an eddy due to a triplet map [2], and the sign is
randomized. In the eddy space-time map, it often happens
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that eddy boxes will overlap. In this case, the line-directed
velocity component for a given particle consists of the sum
of velocities for each eddy box in which the particle is lo-
cated. The off-line fluid velocities are taken as the local
gas velocity on the line.

A significant drawback to the Type-C interaction is
that it does not obey the tracer-particle limit. The fluid is
mapped instantaneously to new locations during an eddy
event, but the particles respond to this fluid motion over
a finite time during the diffusive advancement. This may
not be statistically important in particle dispersion stud-
ies, but in applications such as combustion, where parti-
cle temperature-history effects are important, the correct
tracer-limiting behavior is important. Another potentially
important difference is an apparent time shift. The re-
sult of an eddy triplet map is observed at the time of the
triplet map in the Type-I eddies while there is a delay of
time βpτe for the same net effect to be observed with the
Type-C eddies. The two models are compared further in
the next section.

2.2.4. Instantaneous and continuous particle-eddy interac-
tion

In this section, the fundamental difference between the
Type-I and Type-C particle interaction implemented in
this study is discussed. In a Type-I interaction, the parti-
cle has an instantaneous displacement in the ODT-aligned
direction when it interacts with an eddy. That is, the
particle goes through a discontinuous displacement due to
the eddy interaction, and then the interaction will expire
immediately because the eddy event implementation is in-
stantaneous. Particles interact with a single eddy at a time
in the simulation time frame, although the effective eddy
lifetimes might overlap. In contrast to the Type-I inter-
actions, there is no instantaneous displacement of particle
motion in the Type-C interaction. In the Type-C inter-
action, although an eddy event is instantaneous, the eddy
effect on particles is allowed to exist in the real time co-
ordinate for the eddy duration. In this sense, the Type-C
interaction results in a “delay” in the particle dispersion
as Fig. 4 shows. In the Type-C interaction, a particle has
continuous interactions with eddies no matter when and
where it enters the same space and time region as the eddy
has. It is quite likely that one particle can feel the effects
of multiple eddies simultaneously. Implementation of the
Type-C interactions in ODT requires keeping track of the
positions of all eddies from the time each eddy is born until
that individual eddy’s duration has expired. In the Type-I
PEI model, the particles are less likely to interact with the
eddy event when the particle-line velocity becomes larger.
Assume that the velocity component in the line direction
reaches the infinite limit; in that case, there is no way that
the particle has a chance to enter the eddy because par-
ticle trajectories and the triplet maps are parallel lines in
the space-time plane y− t. This is not a problem for many
typical flows in which the particles move with similar or
smaller velocities than the fluid. In contrast, the Type-C

Simulation time 

I 

C 

Y 

L 

L 

βpτe βpτe 

Figure 4: Type-I vs. Type-C particle-eddy interaction. Shadow
boxes represent the eddy effect over the spatial domain [y0, y0 + L]
and temporal period βpτe; single solid lines represent the particle
trajectory; the dashed line represents the particle “interaction” tra-
jectory due to the particle-velocity history in the Type-I interaction
[34].

PEI model “extends” the eddies in the real time coordi-
nate and thus allows the particles to interact with eddies
when they occupy the same spatial-temporal coordinate.
The Type-C interaction is advantageous for cases in which
particles move very quickly in the line direction. Exam-
ples of such flow might include shock-driven turbulence or
buoyancy dominated flows where particles may move in
a line direction corresponding to strong density gradients
driving the mixing process.

A problem with the Type-C model would occur in the
case of two-way coupling between the fluid and particle
phases for non-passive particles. The instantaneous triplet
maps would need to account for the influence of the parti-
cles on the gas phase. But in the Type-C interaction, the
particle motions occur continuously and later than the in-
stantaneous triplet maps that affect the fluid. So there is
an inconsistency between the fluid and particle phases that
would be difficult to model. Conversely, two-way coupling
can be easily done in the Type-I model using kernel func-
tions to account for particle-fluid momentum transfers in a
manner similar to the way energy is distributed among ve-
locity components during triplet maps in the current ODT
model, (and is the subject of future work).

The particles are able to interact with an eddy in sev-
eral different ways:

1. The particles could overlap the eddy box in line di-
rection at the time the eddy is born;

2. The particles could enter the eddy box through the
offline sides (Type-C only);

3. If the eddy is still active, the particle could re-enter
the eddy through the sides of the box (Type-C only).
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In the implementation of the Type-C interactions, a new
scheme is proposed to allow eddy boxes to move in the x,
y, and z directions that is similar to the idea of the Type-I
interaction in this sense. That is, only the relative motion
of the particle and eddy box in all directions is recorded
until either the particle crosses out of the box or the eddy
lifetime ends. This is very important for the Type-C in-
teraction to accurately capture the effect of crossing tra-
jectories.

The eddy box is advected in the x and z directions
using the x and z gas velocity components at the initial
particle location for Type-I and Type-C models. Schmidt
et al. used the eddy-averaged x and z gas velocities for
their Type-I simulations [31, 29, 30]. While there is some
appeal in using an eddy-average velocity, there are in-
consistencies that arise in certain cases. These are most
readily observed in the case of tracer particles. Particles
that exist in fluid elements with velocities differing from
the eddy-average velocity can cross out of the eddy even
though they remain associated with fluid elements. This
results in a shorter eddy interaction time and less disper-
sion than that of the actual fluid elements. Naturally, this
breaks the coincidence of fluid and tracer particles in the
Type-I interactions. This early crossing effect is severe for
tracer particles because we find that the parameter βp is
relatively small leading to significantly reduced tracer dis-
persion when the eddy-average box velocity is used. It is
possible to alter model coefficients to recover the appropri-
ate particle dispersion, but differences will remain between
the fluid and tracer evolution, and we find that the depen-
dence of the dispersion on the Stokes number (or particle
Froude number) is not correct. For the Type-C eddies, the
particles do not match the tracer limit and the sensitivity
to the local versus eddy-averaged velocity is less signifi-
cant. Further, the application of the local velocity is more
complicated for the Type-C eddies since it evolves in time.
For these reasons, the simpler eddy-averaged velocity is
employed for the Type-C interactions, but we recommend
the local fluid velocity for Type-I interactions.

2.2.5. Type-IC particle-eddy interaction

In order to overcome the violation of tracer limit of the
Type-C model, another alternative interaction model is
introduced here, which is referred to as the Type-IC model.
As in Type-C, the eddy is allowed to exist in real time for
the duration of the eddy lifetime. However, any particle
that overlaps an eddy at the eddy event time undergoes
a Type-I interaction, and is not allowed to interact with
the same eddy in a continuous Type-C interaction, even
if the particle leaves the eddy interaction box and comes
back into the box by one of the sides of eddy box. This is
because the Type-I interaction already takes into account
the entire lifetime of the eddy. Conversely a particle which
first enters an eddy box from one of the sides does not
undergo a Type-I interaction, but will interact with that
eddy in a Type-C manner, and may interact with that
same eddy as many times as it (possibly) re-enters the box.

Y 

Real time t 

I1 I2 C3 

Y 

Real time t 

C1 I2 C3 C4 C5 
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Figure 5: Two illustrative Type-IC particle-eddy interactions.

It is worth noting that the Type-IC interaction model is
able to match the tracer particle limit because in order to
have a Type-C interaction a particle must enter an eddy
interaction box from either of the sides, and a tracer or
gas particle can not do so.

Figure 5 shows two possible particle trajectories in the
Type-IC particle-eddy interaction context. In Fig. 5 (left)
the particle first interacts with eddies 1 and 2 sequentially
in Type-I interactions (I1 and I2). Then it enters eddy 3
through the bottom side of the eddy box and experiences a
Type-C interaction (C3). Although the particle re-enters
eddy 1 three times and eddy 2 once, it does not undergo
any Type-C interaction with them because the Type-I in-
teraction with eddy 1 and eddy 2 have already been taken
into account at the beginning. In Fig. 5 (right) the particle
has a Type-C interaction with eddy 1 (C1), and changes
direction in a Type-I interaction with eddy 2 (I2). Then
it re-enters eddy 1 (Type-C) (C3), enters eddy 3 (Type-C)
(C4), where it changes direction again, and finally enters
eddy 1 (Type-C) (C5).

3. Turbulent jet configuration

3.1. Experiments

In this study the turbulent dispersion of particles in
shear-dominated turbulent flows is studied. Measurements
of particle dispersion in round turbulent jets was studied
by Kennedy and Moody [15]. These measurements span
a range of Reynolds and Stokes numbers, which were ob-
tained by varying the jet velocity, nozzle diameter, and
particle diameter. Reynolds numbers based on the jet ve-
locity (air) range from 10000 to 30000. Fully developed
turbulent flow conditions at the nozzle exit are used. Hex-
adecane droplets with number average diameters of 60 and
90 µm are used for the study. The mean particle density is
4990 kg/m3. Monodisperse particles were generated in the
experiments with a size uncertainty of ±2µm [15]. The air
used in the jet is at room temperature and pressure and
thus the particles are essentially non-vaporizing. The par-
ticle loading is small with more than 1000 droplet diame-
ters separating particles so that particles do not alter the
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fluid velocity, nor do they modulate the turbulence; this
was verified by the measurements of Kennedy et al [15].

3.2. Simulations

The ODT simulations are carried out in a temporally
evolving planar jet configuration, which has characteris-
tics similar to those of a spatially evolving round jet [17]
and has been routinely applied in ODT simulation, e.g.,
[12, 8, 10]. The similarity scaling of temporal turbulent
planar and spatial round jets is illustrated by constant-
density momentum scaling [17]. The width and axial ve-
locity of a spatial round jet evolve as W ∼ x and u ∼ 1/x,
respectively. The scalings for a temporal planar jet are
W ∼

√
t and u ∼ 1/

√
t [36]. These time scalings also fol-

low from the treatment in Schlichting [27, p. 731-2]. If we
integrate dx = udt using u ∼ 1/

√
t we get x ∼

√
t so that

the x scaling of the temporal planar jet simulated here is
the same as the experimental spatial round jet.

To compare the temporal evolution with the spatial ex-
perimental measurements, a convective velocity, Um(t), is
required to transform the evolution time (t) to the stream-
wise spatial coordinate (x), which is obtained from the
ratio of the momentum flux, Ṁ , to the mass flux, ṁ,

Um(t)− U∞ =
Ṁ

ṁ
=

∫∞
−∞ ρ(u(y, t)− U∞)2dy∫∞
−∞ ρ(u(y, t)− U∞)dy

, (24)

where U∞ is the axial velocity of the gas phase far from
the jet (U∞ = 0 in this study) [12]. This assumption im-
plies that all points on the line reach a given measurement
plane at the same time. The initial gas velocity condi-
tions for the turbulent planar jet, Ug0, are given in Table
1 as a function of the Reynolds number, Re, and the jet
exit diameter, D. The streamwise velocity at the inlet is
specified using the following hyperbolic tangent function
to smoothly transition the velocity in the radial direction
and is shown schematically in Fig. 6,

Ug(y) =
A

2

[
1 + tanh

(
y − L1

w

)
· (25)(

1− 1

2

(
1 + tanh

(
y − L2

w

)))]
, (26)

where A is the velocity amplitude, w is the transition
boundary layer width, and L1 and L2 are the middle posi-
tion of the transitions. Particles with different diameters
are injected into the centerline of the jets. The simula-
tion domain width is 40D and the ODT model evolves for
0.11 s for all the cases, which is approximately 70 x/D.
The initial temporal resolution is 0.2 µs, the initial spatial
resolution is 50 µm, and an adaptive meshing algorithm
is used, which refines the mesh as fluctuations cascade to
smaller length scales. The initial conditions for the dis-
persed phase are given in Table 1, in which the initial
particle axial velocity, Up0, along the centerline is extrapo-
lated from experimental results. The results reported here
are collected over 512 ODT realizations, which are enough

Table 1: Initial conditions of gas phase and particle phase (60, 90
µm), and particle nozzle Stokes number in the 7 mm jet (St =
τpUg0/D).

Re = 10000 Re = 20000 Re = 30000

Ug0 21.5 m/s 43 m/s 64.5 m/s
Up0 (60µm) 17.5 m/s 30 m/s 46 m/s
St (60µm) 26 53 77
Up0 (90µm) 15 m/s 32 m/s 51.5 m/s
St (90µm) 61 122 178

w 

A

L1 L2 

Ug 

y 

Figure 6: Schematic of the tanh profile used to specify the initial
streamwise velocity profile.

to provide stationary ensemble statistics. The ODT pa-
rameter values are C = 16, Z = 50 and βles = 0.4 for all
the ODT simulations.

4. Results and discussion

4.1. Jet evolution

In order to compare particle results between our ODT
results and experimental data, it is first necessary to com-
pare the gas-phase flow characteristics. The ODT-predicted
streamwise velocity evolution at the centerline is compared
with the experimental measurements [15] in Fig. 7. The
mean and fluctuating axial velocities are normalized by
the jet exit velocity Ug0, and the position is normalized
by the jet exit diameter D. The decay of the centerline
mean and root-mean-square velocities, Uc and Uc,rms, are
typical of free turbulent jets. Overall, the numerical re-
sults agree well with experimental data. The ODT mean
velocity decays somewhat faster than the experiments at
approximately x/D > 30. The ODT exhibits a Reynolds
number similarity and the profiles are very similar for the
three simulations, while the measurements exhibit some
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Reynolds number dependence as shown in the figure. This
may be indicative of some differences in the development
of turbulence and boundary layers within the jet nozzle;
we have not attempted to correct for this in the ODT sim-
ulations.

The best fit line through logUc vs log x is considered.
At x/D > 60, the ODT gives slopes of -0.79, -0.95, and
-0.98 for the Re=10000, 20000, and 30000 cases, respec-
tively. The results appear to be asymptotic to -1 with
increasing Reynolds number. The experimental data are
more difficult to fit. There is an obvious “jog” in the
Re=20000 data at x/D = 40, and in the Re=30000 data
at x/D = 52. If we take a fits through the last 4 points
in the Re=10000 data and through the points before the
“jog” in the other two sets, the slopes are -0.72, -0.71,
and -0.71 for the Re=10000, 20000, and 30000 cases, re-
spectively. For reference, in the region 30 < x/D < 40
(corresponding to the slope for the Re=20000 experimen-
tal case), the ODT slope ranges from -0.82 to -0.86 for the
three cases. We note that the Reynolds numbers studied
are not particularly high, and that convergence to a slope
of -1 is expected as Re increases.

The ODT velocity fluctuations show the same qualita-
tive trend as the experiments, but the peak that occurs at
x/D ≈ 5 is over-predicted by the ODT by a factor of two.
At later times, x/D > 20, the ODT velocity fluctuations
are in good quantitative agreement with the experiments.
This is important since most of the particle dispersion (dis-
cussed below) occurs at x/D > 30 in the experiments and
simulations.

4.2. Particle phase

The results of particle transport are presented in this
section, specifically, ODT and experimental results for a
turbulent multiphase round jet are compared. A detailed
analysis is conducted to assess the performance of the three
ODT multiphase interaction models described in Sec. 2.2.
In this study, the βp value used in the jet flow for all the
interaction models is 0.08.

4.2.1. Type-I particle-eddy interaction

The particles have instantaneous displacements during
the Type-I interaction with the eddies. The dispersion of
particles is predicted for nonzero gravity (g = 9.8m/s2)
as a function of normalized axial location x/D. Figure 8
compares the dispersion data for ODT cases of 60 µm
and 90 µm particles to experimental measurements for
Re = 10000, 20000 and 30000 using the Type-I interac-
tion model. Particle dispersion Dp is defined as the root
mean square displacement of the particles from the jet cen-
terline, computed using the ensemble of ODT realizations.
The particle dispersion increases with the jet evolution.
Particles with larger Stokes numbers disperse less and the
ODT Type-I interaction model provides good qualitative
predictions of this. In the upstream part of jet (x/D < 30),
the particles are not strongly affected by the fluid flow, due
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Figure 7: Normalized mean axial velocity (a) and turbulence inten-
sity (b) along the jet centerline. Lines represent ODT predictions.
Experimental measurements are represented by cross points (Re =
10000), square points (Re = 20000), circular points (Re = 30000).
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to a lack of large eddy structure. As the large eddies that
account for the bulk of the spreading appear later, the
particles are transported away from the center of the jet,
resulting in non-uniform particle dispersion patterns with
particle size.

The particle movement in the jet is strongly influenced
by the size of eddies and consequently the response time
of the particles. A representative eddy map of the flow
field for a single ODT realization is shown in Fig. 9(a),
discussed further below.

In Fig. 8, the particle dispersion decreases with increas-
ing Re of the jet. This is true for both the experiments
and simulations. We attribute this to the particles having
higher St at higher Re, as shown in Table 1. At higher
St, the particles are less influenced by the gas fluctuations
and disperse less. In addition, at higher Re the exit veloc-
ity of the particles is higher (though somewhat lower than
the gas exit velocity in all cases). This decreases the par-
ticle residence time in the flow. The higher St at higher
Re also contributes to the crossing-trajectory effect, which
decreases dispersion, when particles exit an eddy prior to
the eddy lifetime [34, 38, 32].

As the Re and thus St increase, Fig. 8 shows that the
relative differences between the dispersion of the 60 and
90 µm particles decreases. This is true for both the exper-
iments and the simulations. For the ODT, at x/D = 50,
the difference in dispersion of the 60 and 90 µm particles
is approximately 180, 155, and 90 mm2 for Re = 10000,
Re = 20000, and Re = 30000, respectively. The relative
difference in the Stokes numbers for the two particle sizes
are nearly the same for the three Reynolds numbers (as
shown in Table 1), nevertheless, the difference between
the dispersion of the two particle sizes decreases as Re in-
creases. This is due to the increase in the magnitude of the
Stokes numbers, which decreases the magnitude of the dis-
persion, as noted above, an effect previously documented
with ODT particle modeling [34]. In the previous subsec-
tion, the power law scaling of the velocity with x/D was
observed to approach similarity differently with increasing
Reynolds numbers when comparing the measurements and
the ODT predictions; the relative differences in dispersion
observed here are consistent with those differences in the
velocity evolution.

Figure 10 shows the mean axial particle velocity along
the centerline for the two particle sizes in the three dif-
ferent Re jets at different axial positions. Overall, there
is a good agreement between numerical and experimental
results. Initially the particles are injected at a lower veloc-
ity than the fluid. At the nozzle exit the particles tend to
accelerate to catch up to the air, and then their velocity
decreases due to momentum exchange as the particles re-
lax to the decaying gas velocity. The differences between
the ODT and experimental results are due to the combi-
nation of modeling differences and the uncertainty in the
inlet gas conditions related to turbulence development.

Generally, particle dispersion is largely determined by
the inertial response time of the particles, which is mea-
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Figure 8: Type-I dispersion of 60µm and 90µm particles in the
7mm jet with Re = 10000, 20000 and 30000.

sured by the Stokes number. Small Stokes-number (St <
1) particles are carried by the fluid around the flow field
and are in a quasi-equilibrium with the fluid, as were the
hollow glass particles studied in the previous homogeneous
turbulence case [34]. In contrast, particles with moderate
Stokes-number (e.g. 60µm and 90µm particles in current
study) tend to move around the eddy edges because of
the effects of flow field strain. For a high Stokes-number
case (St > 100, not shown here), the general dispersion
pattern is similar to that of the medium Stokes-number
cases. However, since the particles are so slow to respond
and follow the fluid motion, even the motion of large eddy
structures are modulated in the particle response.

4.2.2. Type-C particle-eddy interaction

In the Type-C model, the eddy events are instanta-
neous, but the particle-eddy interaction is continuous, with
particles influenced by the eddy during the ODT diffu-
sive advancement in the flow evolution coordinate. This
is illustrated in Fig. 9(b); the overlapping regions of eddy
boxes in the figure suggest the possibility of particle inter-
actions with multiple active eddies simultaneously. Fig-
ure 11 shows the comparison of the particle dispersion
predicted by the Type-C interaction model to the exper-
imental data Re = 10000, 20000, and 30000. In general,
the Type-C model is able to predict particle dispersion for
this range of Stokes numbers with a similar fidelity as the
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Figure 9: Maps of eddy sizes, locations, and occurrence times for
representative ODT realizations for jet flow. Plot (a) shows instan-
taneous eddy locations for a Type-I interaction; plot (b) shows eddy
“box” extents for a Type-C interaction.
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Figure 10: Type-I mean streamwise velocities of 60µm and 90µm
particles in the 7mm jet.

Type-I model, but there are important differences between
the two predictions that will be discussed in the next para-
graph. At the highest Reynolds number the agreement
with the data appears to be somewhat better than that
of the Type-I model. The axial velocities of the parti-
cles for the Type-C model for two particle sizes and three
Reynolds numbers are shown in Fig. 12, which is similar
to Fig. 10.

Here we go beyond the experiment and further examine
the Type-C interactions. Figure 13 compares the disper-
sion of tracer fluid particles to quasi -tracer particle in the
case of Re = 30000. The quasi-tracer particle is defined to
have the same properties as a hollow glass particle in previ-
ous homogeneous turbulence study [34]. It turns out that
the Type-C model underpredicts the tracer limit because
of the delayed dispersive motion of small Stokes particles,
in contrast to the fluid particles; that is, the fluid particles
are displaced at the eddy-occurrence time and the Type-C
quasi-tracer particles undergo the same displacement over
an eddy lifetime. Since the greatest dispersion is associ-
ated with the largest and longest lifetime eddies, this is
not a trivial difference. Figure 14 shows the comparison
of the Type-I and Type-C interaction models for the dis-
persion of 60µm and 90µm particles in the Re = 10000
jet. The Type-I model gives higher dispersion than the
Type-C model because, in the Type-I model, the full PEI
occurs at the occurrence of the eddy, thus enabling the
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Figure 11: Type-C dispersion of 60µm and 90µm particles in the
7mm jet with Re = 10000, 20000 and 30000.
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particles to move earlier. This is consistent with Fig. 4.
The large Stokes-number particles tend to retain their ve-
locities longer, and therefore their dispersions are more in-
dependent of the PEI type during the early stage of the jet
evolution in which the eddy time scales τe are small. With
the increase of τe to the order of magnitude of the inertial
response time of large particles, the large particles begin
to show different dispersive behaviors for the two different
interaction models. In contrast, the small particles adjust
to the local jet velocities more quickly, leading to signif-
icantly different dispersions between the two interaction
models much earlier in the jet.

Quasi-tracer dispersion in the Type-I and Type-C mod-
els is further illustrated by considering particle number
density profiles. Simulations were performed in the Re=20000,
7 mm jet using 1000 hollow glass particles uniformly dis-
tributed across the domain. 2000 realizations were com-
puted and the number density distribution evaluated using
101 uniformly spaced bins. Figure 15 shows the results for
Type-I and Type-C models at five downstream locations.
The profiles are shifted vertically for clarity of presenta-
tion. There is some statistical noise in the profiles, but
the differences between the Type-I and Type-C models
are clear. The Type-I model shows a nearly uniform pro-
file, which is consistent with the continuity constraint for
constant density flows. (The Type-IC model, not shown,
behaves like the Type-I model.) Conversely, the Type-C
model has a trimodal distribution and does not obey the
continuity constraint. In the Type-C model, the number
density is depressed in high shear regions of the jet; par-
ticles are transported from the high shear region outward
and inward towards the jet center, resulting in three peaks
in the number density profile. Effectively, the local parti-
cle dispersivity in the Type-C model is accentuated in the
shear regions since the particles feel the effects of eddies
that occurred at earlier times, while the jet turbulence in-
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tensity decreases with time. This results in a mean drift
of particles out of the shear regions.

Such particle drift is also known to occur in stochastic
particle dispersion models based on measures of the turbu-
lence properties as is commonly employed in both RANS
and LES simulations for Lagrangian particles. MacInnes
and Bracco observed this uneven particle dispersion in
mixing layers and jets in the tracer limit using discrete
and continuous random walk models (DRW and CRW)
[22]. Normalized number density profiles there showed se-
vere deviation in the particle density for the DRW and
CRW models, peaking greater than three and five times
the value expected based on continuity for the CRW and
DRW models, respectively, in the jet configuration. Such
model errors were attributed to gradients in the fluctuating
fluid velocities. This effect has also been investigated in
the context of boundary layer transport of particles as dis-
cussed in Iliopoulos and Hanratty [14]. Corrections have
been developed to reduce this effect that take advantage
of knowledge of the average fluctuation velocities [22, 14].

The fluctuations in the Type-C particle density appear
to occur due to the variation in the stream-wise velocity
fluctuation profiles and are related to the delay in the par-
ticle dispersion. That is, particle dispersion occurs start-
ing at the eddy event and is not completed until after the
eddy lifetime. In developing flows this leads to small incon-
sistencies in the particle and fluid dispersion for Type-C
particles. In the Type-C approach within ODT, the un-
even particle dispersion is less significant than observed
in, e.g. [22], possibly due to the difference in the magni-
tude of stream-wise versus cross-stream gradients. Still,
the fact that Type-C interactions do not inherently match
fluid continuity is a reason to prefer the Type-I model in
cases where the particles largely follow the fluid motion.
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Figure 15: Particle number density profiles for the Re=20000, 7
mm jet at five streamwise locations. The particle number density is
normalized by the freestream number density.

4.2.3. Type-IC particle-eddy interaction

As described in Sec. 2.2, the Type-IC model is consid-
ered to be the most robust PEI model in that it not only
allows the particles to interact with multiple eddies at the
same time but also matches the tracer limit. Figure 16
shows the comparison between experimental and simula-
tion values of particle dispersion in the 7mm jet using the
Type-IC model that reproduces the experimental results.
The prediction of particle axial velocities by the Type-IC
model will not be shown here because its comparison to
experimental measurements is within 5% difference of the
results of the Type-I model, shown in Fig. 10. The similar-
ity between the Type-I and Type-IC models is due to the
relatively low line-directed particle velocity. The line di-
rected particle velocity is due to the turbulent advection,
precluding strong transverse eddy trajectory crossing ef-
fects. The tracer dispersion is also well predicted by the
Type-IC model with the combined instantaneous and con-
tinuous interactions. This is shown in Fig. 17, where the
comparison of the radial dispersion of quasi-tracer parti-
cles and tracer particles in the 7mm jet for Re = 30000
are plotted. This comparison shows the correct model be-
havior.

4.2.4. Lagrangian dispersion

The ODT simulation results for particle dispersion pre-
dicted by the three PEI models are presented in Lagrangian
form in Fig. 18. The ODT data are presented as dispersion
statistics in the simulated ODT time coordinate. Just as
we converted the temporal ODT to the spatial domain for
comparison above, the experimental data was converted
to the temporal domain in [15] as their quasi-Lagrangian
results, which were computed using the “average time-of-
flight” of the particles to each measurement plane. (Those
results compared favorably with the “true” Lagrangian
statistics that were also computed in [15].) Note that this
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average time-of-flight to each measurement plane will de-
pend on the local particle dispersion due to radial velocity
variation. This differs somewhat from the ODT treatment
in that the implied time to reach a given measurement
plane in ODT is uniform on the line, as noted above. A
spatial, cylindrical ODT model would not have this limi-
tation (though particles would still be constrained to the
line). Similar to the previous Eulerian predictions, small
particles respond to the fluid quickly and approach the
fluid velocity in shorter times than large particles, thereby
dispersing faster in the jet at a given Re. The Type-I and
Type-IC models are very similar, and give reasonable pre-
dictions. The results and comparisons of the model and
experiments are similar to those presented earlier, espe-
cially in terms of the trends. At early times, there is some
over prediction of the data, especially for the high Re 60
µm cases, but this is more obvious on the log scale pre-
sented where the dispersion is very low.

Lagrangian particle dispersivity, DL, can be defined as

DL =
1

2

dD2
p

dt
=

1

2

d

dt
〈Dp(t)Dp(t)〉, (27)

The particle dispersivity is estimated in the linear por-
tion of the Lagrangian dispersion curves by using a least-
squares fit. Table 2 compares ODT simulation results
of DL to the values reported in Kennedy’s study [15] at
Re = 20000 and 30000. DL increases with increasing
Reynolds number. Taylor’s theory [35] shows that the
mean-square dispersion of fluid particles in stationary ho-
mogeneous turbulence is a quadratic function of evolution
time and behaves linearly with time for long times-of-
flight. Batchelor [3] analyzed the transport of fluid parti-
cles in shear flow and showed that the dispersion increases
linearly with time, and the dispersivity keeps constant.
However, a larger Stokes-number particle is not expected
to have the behavior of a fluid particle due to its finite
inertia. As discussed before, the Stokes number of inertial
particles determines how they respond to the fluctuations
of the surrounding flows. The particle would eventually
tend to respond to all the velocity fluctuations of the gas
phase when the local particle Stokes number is O(1).

Figure 18 suggests that an approximately linear region
after about 20 and 30 milliseconds, respectively, where
they achieve a Stokes number of O(1). The figure includes
dotted lines with slopes of 2 and 1 on the log scale, which
indicate the same power law scaling exponents. Table 3
presents the long time exponents for the experimental data
and the ODT simulations. These were computed by fit-
ting a line through the last three measurement points of
the log(t) and log(D2

p) data. The values for the experi-
mental data vary between 1.5 and 2.1, which the ODT are
closer to 1. The Type-I and Type-IC values are similar,
as expected, while the Type-C values tend to be some-
what lower. Due to time-space transformation used as
described above, the scaling exponents of the ODT in the
spatial coordinate will follow from those presented here
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Table 2: Particle dispersivity DL (dp = 60µm and 90µm) in the
7mm jet.

dp Re Exp Type-I Type-C Type-IC

60 µm 20000 0.0079 0.0067 0.0039 0.0069
30000 0.010 0.0095 0.0053 0.0111

90 µm 20000 0.0066 0.0037 0.0068
30000 0.0106 0.0063 0.0103

Table 3: Power law exponents at late times using the data of Fig 18.

dp Re Exp Type-I Type-C Type-IC

60 µm 10000 1.8 1.0 0.87 1.2
60 µm 20000 1.7 0.87 0.86 1.1
60 µm 30000 2.1 1.0 1.2 1.2
90 µm 10000 1.5 1.3 1.0 1.3
90 µm 20000 1.7 1.3 0.90 1.2
90 µm 30000 1.6 0.94 1.0 1.2

in the temporal coordinate through the relation x ∼
√
t.

That is D2
p ∼ x2.

4.3. Parameter sensitivity analysis

Previous studies, e.g., [12, 21], of parameter sensitiv-
ity of ODT parameters C, Z, and βles have formed the
basis for parameter selection for the jet evolution. In the
present work, the fluid phase is not affected by the parti-
cles, so we have set the ODT parameters to give reasonable
agreement with the fluid evolution, and then focus on the
behavior of the particle model, including sensitivity to the
βp parameter. Variations in the ODT parameters will af-
fect the particle dispersion, but only through the effect on
the fluid phase, and reasonable agreement of simulations
and experiments is viewed as a prerequisite for analysis of
the particle dispersion.

In order to investigate the crossing-trajectory effect of
particles in homogeneous turbulence, in previous work we
conducted parametric analysis of βp that relates the turbu-
lence characteristics to the particle-eddy interaction time
[34].

In this section, sensitivity analysis is performed to es-
tablish a common basis on which βp can be estimated for
particle behavior in shear flow among the three PEI mod-
els. The analysis is important to guide the future develop-
ments and extended applications of the ODT multiphase
models. The particle parameter βp determines the mag-
nitude of the particle-eddy interaction in the ODT turbu-
lence. High values of βp lead to possibly excessive inter-
action time by increasing the maximum interaction time
scale βpτe and reducing the eddy velocity, 4YTM/(βpτe),
felt by the particles during interactions. On the other
hand, when βp is low, the particles interact with “fast”

eddies for shorter times. Thus, two competing interaction
effects on the particles are controlled by βp simultaneously.

Figure 19, 20 and 21 show βp sensitivity on the dis-
persions of 60 µm and 90 µm particles in the 7mm jet
for Re = 10000, 20000 and 30000 predicted by the Type-I,
-C and -IC interaction models. Five βp values are chosen,
that is, 0.02, 0.04, 0.06, 0.08 and 0.1, which are similar
to those used in the homogeneous turbulence study [34].
Simulations using βp = 0.08 give the best predictions to
experimental data.

All eighteen cases show similar particle dispersion sen-
sitivity to βp in the shear flow. The particle dispersion
decreases as βp increases. Increasing βp increases the eddy
time scale te = βpτe, making the crossing-trajectory effect
more important in limiting the interaction time. As dis-
cussed in Sec. 2.2, the interaction time is the lesser of te
and the time to leave the eddy, with this latter time scal-
ing with l/2gτp under the influence of quasi-steady grav-
itational settling. Smaller particles with short relaxation
times easily adapt to the fluid fluctuations and tend to in-
teract with the eddies for a longer time, so their dispersion
is less subject to the crossing-trajectory effect. In contrast
to the larger particles, the dispersion of the smaller parti-
cles is reduced less with increasing βp. For a given particle
size, the particle dispersions in the high Re case tend to
decrease faster than the low Re case when the value of
βp increases. This is attributed to enhanced trajectory
crossing in the higher Re case.

In order to illustrate the βp sensitivity in a direct way,
a spreading parameter Sβ at given x/D is defined as

Sβ(βp,1, βp,2) =

(
D2
p,βp,1

−D2
p,βp,2

D2
p,βp,3

)/(
βp,2 − βp,1

βp,3

)
,

(28)
whereD2

p is particle dispersion evaluated at x/D = 50, and
βp,3 is the average value of βp,1 and βp,2. Large Sβ indi-
cates high sensitivity of particle dispersion to βp. Figure 22
shows Sbeta(0.02, 0.1) as a function of Re for the three dif-
ferent interaction models. The dispersion is more sensitive
to βp for larger particles and at high Re due to the increas-
ing impact of the crossing-trajectory effect. This effect was
observed in the previous study of multiphase homogeneous
turbulence [34]. The Type-C interaction model is shown
to be significantly more sensitive to βp than the two other
models. This is because the Type-C model allows the par-
ticles to interact with multiple eddies simultaneously that
leads to more trajectory crossings.

5. Conclusions

This study has been concerned with the development of
ODT multiphase models coupling a dispersed Lagrangian
particle phase to the fluid evolution using three particle-
eddy interaction models (Type-I, -C, and -IC), and the pre-
diction of the transport of particles in turbulent round jet
flows (and more general shear-driven turbulent flows). The

16



Type-I Type-C Type-IC

0

1

2

3

lo
g

10
(D

2 p
/
m
m

2
)

60 µm

Re=30000

Re=20000

Re=10000

0.0 0.5 1.0 1.5 2.0

log10(t/ms)

-1

0

1

2

3

90 µm

Re=30000

Re=20000

Re=10000

0

1

2

3

lo
g

10
(D

2 p
/
m
m

2
)

60 µm

Re=30000

Re=20000

Re=10000

0.0 0.5 1.0 1.5 2.0

log10(t/ms)

-1

0

1

2

3

90 µm

Re=30000

Re=20000

Re=10000

0

1

2

3

lo
g

10
(D

2 p
/
m
m

2
)

60 µm

Re=30000

Re=20000

Re=10000

0.0 0.5 1.0 1.5 2.0

log10(t/ms)

-1

0

1

2

3

90 µm

Re=30000

Re=20000

Re=10000

Figure 18: Lagrangian dispersion of 60µm and 90µm particles predicted by the three model types in the 7mm jet. The dotted lines show
slopes of 2 and 1 for reference.
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challenge in this work is to properly account for particle-
eddy interaction.

The ODT multiphase model uses a Lagrangian frame-
work to solve the transport equations of a particle as it
interacts with a succession of discrete turbulent eddies.
The Type-I PEI model uses instantaneous particle-eddy
interactions and provides good predictions of particle dis-
persion, but does not allow the particles to interact with
multiple eddies at the same time. The Type-C PEI model
resolves the above drawback of the Type-I PEI model by
using continuous PEIs for the finite evolution time. How-
ever, the Type-C model is not able to capture the tracer
limit, and therefore only accurately predicts higher Stokes-
number particles. The Type-IC PEI model combines the
features of the Type-I and -C PEI models, and it is con-
sidered to be the most robust PEI model among the three.

The models compare favorably with experimental re-
sults for a range of characteristic particle response times
and jet exit velocities. The particle dispersion in Lagrangian
form is initially quadratic for short times-of-flight; the
function becomes linear for long times-of-flight as the par-
ticle Stokes number becomes O (1) and the particles be-
have more like tracer particles. The single model parame-
ter βp is used to scale the eddy lifetime and fluid velocities
felt by particles during the interactions. Particle interac-
tions depend on the lesser of the eddy lifetime and the
eddy-crossing time, and this makes dispersion results sen-
sitive to βp for finite Stokes-number particles. The sen-
sitivity was evaluated and is greater for larger particles
and for the flows with greater overall acceleration (higher
Reynolds number here) due to enhanced eddy crossing.

The ODT model has the benefit of resolving a full range
of length and time scales with dynamically evolved turbu-
lence properties. Hence, the ODT particle model is ex-
pected to provide a novel approach to modeling a wide
range of dispersed particle flows, providing an alternative

to methods that filter the fine scales. Extension of the
models to reacting flows, and flows with particle modula-
tion of turbulence under high particle loading conditions
are under development.
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