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Summary

Incompressible channel and pipe flow configurations are investigated using the One-
Dimensional Turbulence (ODT) model, in which the 1-D domain is aligned with
the wall normal direction. A framework for the application of ODT in planar and
cylindrical coordinates is revisited for temporal ODT channel and pipe flow configu-
rations, and a new spatial formulation is introduced. The calculation of the turbulent
kinetic energy (TKE) budgets in ODT for the temporal and spatial formulations is
reviewed for the planar channel flow, and newly introduced in cylindrical pipe flow.
Simulations are performed at three different friction Reynolds numbers, 550, 1000
and 2000, in order to compare ODT results for velocity statistics in the planar and
cylindrical formulation with Direct Numerical Simulations (DNS) from Chin et al.
[Int. J. Heat Fluid Flow 45 (2014) 33-40] and Khoury et al. [Flow, Turbul. Comb. 91
(2013) 475-495]. The efficiency of the model for simulating lower Reynolds number
flows is also evaluated with comparison of ODT results for velocity and passive tem-
perature statistics to the DNS data from Satake and Kunugi [Int. J. Numer. Methods
Heat Fluid Flow 12(8) (2002) 958-1008]. The results show that a representative part
of the first and second order statistical moments for pipe and channel flows can be
captured in a satisfactory way with ODT. For applications in the studied Reynolds
number range, ODT is a highly appealing complementary tool to DNS.

KEYWORDS:
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1 INTRODUCTION

Although the canonical channel and pipe flow configurations have been studied extensively, there are still numerous issues in the
field of wall-bounded flows that have not been properly addressed. A very detailed list of issues and the current state of the art
is presented by Marusic et al. [1]. Open discussions in wall-bounded flows focus on the structure and scaling of wall turbulence
at high Reynolds numbers. On one hand, there is the classical scaling approach, directly related to the mean velocity behavior
and the two principal regions of the velocity profile that follow distinct scalings. On the other hand, there is the more complex
topic of observation of coherent organized motions and their effect on turbulent interactions, e.g. in turbulence production [1].
A comprehensive study on the mean velocity characteristics in turbulent pipe flow is given by Wu and Moin [2]. That study

presents a solid discussion from the classical scaling point of view by means of Direct Numerical Simulations (DNS), for a
range of bulk Reynolds numbers 5300 < ReD < 44000. Monty et al. [3] provide a detailed introduction to the topic, experimental
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results of the large-scale structures away from the wall, and how they are more likely to grow at a greater rate with distance from
the wall in channels. Also adding to this point is the discussion presented by Kim and Adrian [4], regarding the existence of very
large-scale motions (VLSMs), prominent in the logarithmic layer of turbulent pipe flow.
Significant contributions that could help ellucidate the open questions in wall-bounded flows could, and should be eventually

addressed by DNS. However, while DNS have pushed the limits of current computational power, only modest Reynolds numbers
up to Re� = 3008 have been achieved for pipe flow [5]. The simplicity of the channel flow configuration allowed the achieve-
ment of these moderately high Reynolds numbers earlier [6,7]. There is an important lag between DNS studies and experimental
turbulence measurements, given that the latest experimental studies have been able to achieve Re� up to 98000 [8].
Turbulencemodels such as the Reynolds-AveragedNavier-Stokes (RANS) or Large Eddy Simulations (LES) are computation-

ally less expensive in comparison to DNS. These are ideally applicable, however, when there is a clear separation of scales in the
flow dynamics and the small or non-resolved scales can be modelled [9]. Problems aimed at addressing fundamental questions,
such as the turbulence scaling itself and the turbulence dynamics characterization cannot be solved by the former turbulence
models given that the behavior of the small scales is not always understood. PDF transport methods are an alternative in this
case, however, their main limitation resides on the choice of suitable mixing models [10]. Recently, a new branch of statistical
modeling based on the benefits of machine learning has been introduced. Wu et al. [11] propose a novel approach for a RANS
closure method involving a machine learning algorithm from DNS training sets is described and validated. The cases studied
by Wu et al. [11] are carefully selected in a way that shows the features of the algorithm; these are cases where RANS models
would have severe performance limitations (cases involving secondary flow and separation events). Ma et al. [12,13] also applied
Neural Networks (NN) for the generation of RANS closure terms. As with any machine learning approach, the limitation of the
suggested algorithms resides in the availability of training sets, in this case, the availability of DNS studies that need to be used
as an input for the learning algorithm.
In contrast to RANS, LES, or traditional PDF transport methods, i.e., instead of modeling length-scales or molecular mix-

ing/diffusion processes, Kerstein developed the One-Dimensional Turbulence model (ODT) [14]. In ODT, all molecular diffusion
is resolved directly, as in DNS, but only in 1-D. 3-D turbulence is modelled by means of a solution-dependent sequence of
stochastic 1-D eddy events. For turbulent boundary layer-type problems, ODT is a cost-effective model that can complement
DNS, and which may provide insights, although with less fidelity, at parameter ranges that are not accessible to DNS. So far,
ODT has been validated in a variety of flows (see e.g. [15,16,17,18,19,20,21]). In this study, we focus on a new cylindrical formula-
tion for incompressible pipe flow in ODT, as a way to extend the model into more complex flows. The cylindrical formulation
for ODT was first introduced by Krishnamoorthy [18]. Lignell et al. recently developed a more comprehensive framework for
the cylindrical formulation [22]. In the present work, we expand the latter formulation with a spatial formulation for closed sys-
tems in the radial direction, and introduce the ODT turbulent kinetic energy (TKE) equations in the cylindrical case, along with
calculation examples for production and dissipation budgets.
This paper is structured as follows: Section 2 provides the model details for the simulation of incompressible channel and pipe

flow. We begin with a brief overview of the fundamentals behind the stochastic part implementation in ODT, relying heavily
on the work of Lignell et al. [22] for general aspects of the cylindrical formulation, and focusing the analysis on the limitations
encountered by the formulation in radially closed systems. Afterwards, we discuss the derivation of the diffusion equations
in ODT for the temporal formulation, and we then generalize some concepts for a new spatial formulation in radially closed
systems. Section 3 details the derivation of relevant statistical quantities in ODT, with the purpose of deriving and introducing the
cylindrical ODT turbulent kinetic energy (TKE) equation. Section 4 discusses the application of the model for velocity statistics
in moderate and large Reynolds number regimes, comparing ODT results to DNS data [23,6,7,24,25,26]. Section 5 discusses the
application of the model for lower Reynolds number regimes, comparing ODT velocity and passive scalar temperature statistics
with DNS data [24,27]. Finally, some concluding remarks are provided in Section 6.

2 ODT MODEL FORMULATION FOR INCOMPRESSIBLE CHANNEL AND PIPE FLOW

In the ODT model, the deterministic solution of 1-D diffusion (and possible reaction) evolution equations is coupled to the
stochastic implementation of 1-D eddy events. An eddy event in ODT models the effects of turbulent transport due to eddies on
the 1-D property profiles of the flow. Concurrently, the deterministic diffusion process catches up to implemented eddy events,
in what could be considered as a two-step operator splitting approach. Following this categorization, details of the eddy event
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FIGURE 1 Representation of an ODT line in a cylindrical coordinate system. An exemplary cell with size Δri is shown to
illustrate the form of the effective area/volume element of the cell, i.e. a ring element.

implementation are given in Section 2.1, while the form and derivation of the 1-D deterministic diffusion equations is described
in Section 2.2.

2.1 Stochastic turbulent advection
The stochastic turbulent advection process in ODT has been extensively detailed in previous publications. A complete discus-
sion regarding the eddy event implementation is given by Lignell et al. [16,22] for the planar and cylindrical ODT formulations,
respectively. In this section, we just discuss some fundamental aspects of the stochastic turbulent advection treatment and the
limitations of the model regarding the spatial formulation in channel and pipe flows.
The implementation of an eddy event is characterized by the application of the triplet map to the 1-D scalar profiles governing

the flow conditions [14]. Operationally, the planar triplet map is defined as a threefold spatial reduction or compression of a given
property profile within some specific eddy range [y0, y0+ l], where y0 is the left edge of the eddy and l is the length of the eddy,
or eddy size. This compressed profile is then copied three times along the eddy range with the middle copy spatially inverted.
This procedure conserves all quantities within the eddy range and introduces no discontinuities in the function [14]. A derivation
of the transformation function describing the cylindrical triplet map can be found in APPENDIX A.
ODT can be used with a single velocity component, or in a vector formulation, in which three velocity components are

modelled. The latter is facilitated with a so-called kernel function that is added to velocity components after mapping to effect
inter-component energy transfer in a way that conserves bothmomentum and energy. In the case of the single velocity component
treatment, the measure preserving property of the triplet map guarantees kinetic energy conservation [14]. This is because the
line integral of u2 would be conserved before and after mapping. Generally, however, it is desired to model the 3-D dynamics
with ODT, and therefore many studies rely on the implementation of the previously mentioned kernel function [16,20,21]. For the
planar ODT vector formulation, the velocity mapping follows the work from Ashurst and Kerstein [28],

uk(y)→ uk[f (y)] + ckK(y) + bkJ (y). (1)

Here, K(y), J (y) are kernel functions, while ck and bk are the respective kernel function coefficients, as defined by Ashurst and
Kerstein [28] for the planar ODT formulation (k ∈ {1, 2, 3}). f (y) is the triplet map transformation [28].
We now specialize the analysis to the cylindrical formulation. In the case of pipe flows, the planar philosophy is maintained

concerning the application of two kernel functions to the mapped velocity field, as in Eq. (1), but substituting y by r. The velocity
field notation uk and the cylindrical system configuration follows in this case the nomenclature given in Figure 1 . Also, f (y) is
changed to f (r), whereby f (r) refers to the transformation rule given in the cylindrical case by Eq. (A9). As in the planar case,
the kernel functions K, J are defined as

K(r) = r − f (r), J (r) = |K(r)|. (2)
In general, as in previous publications, there are three main parameters governing the implementation of an eddy event: r0,

l and �. r0 refers to the eddy position, specifically the position of the left edge of the eddy. l is the eddy size as before. � is an
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eddy rate distribution governing the sampling and selection of eddies,

� = C
l2�

. (3)

Here, C is an ODT model parameter governing the frequency of events, or the magnitude of the eddy rate. The eddy rate � is
directly related to the ODT formulation used. As detailed in Lignell et al. [16,22], a temporal ODT formulation (T-ODT) considers
a temporally developing line through the turbulent flow, while a spatial (S-ODT) formulation describes the stationary streamwise
parabolic flow of individual fluid parcels which are advected with their local streamwise velocity. In both formulations, the
direction of the ODT line coincides with the direction of dominant transport. For channel and pipe flows, this direction is the
cross-wise or radial direction, respectively. In T-ODT, � is identically equal to a modelled eddy turnover time � (the unit of � or
� is s), while in S-ODT, it is equal to a modelled characteristic streamwise eddy length scale (the unit of � is m). Whether it is
interpreted as a time or a length scale, � can be calculated for a given eddy on the basis of the kinetic energy (T-ODT) or kinetic
energy flux (S-ODT) implied during the corresponding eddy event,

E′
kin,T−ODT ∼

1
2

⎛

⎜

⎜

⎝

´ r0+l
r0

�[f (r)]K2rdr

�2

⎞

⎟
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⎠

, or E′
kin,S−ODT ∼

1
2
ũ1
2[f (r)]

⎛

⎜

⎜

⎝

´ r0+l
r0

�[f (r)]u1[f (r)]K2rdr

�2

⎞

⎟

⎟

⎠

. (4)

E′
kin in T-ODT is interpreted as a kinetic energy per unit area in the planar formulation, and a kinetic energy per unit length in the

cylindrical formulation. In S-ODT, E′
kin is a kinetic energy flux per unit area in the planar formulation, and a flux per unit length

in the cylindrical formulation. ũ1 is a bulk average of the streamwise velocity in the interval [r0, r0+l]. The integrals in Eq. (4) are
evaluated with r0 and l sampled from a presumed Probability Density Function (PDF) for eddy sizes and locations P̂ (r0, l) [16].
We define E′

kin = Ekin−ZEvp as the remaining kinetic energy after the subtraction of an energetic viscous penalty Evp from the
available kinetic energy (or kinetic energy flux) Ekin. Z is an ODT model parameter, i.e., a non dimensional scaling factor for
the magnitude of Evp. This energetic viscous penalty forbids implementation of very small eddies, which would otherwise be
instantly dissipated as heat [28]. Additionally, for wall-bounded flows,Z acts as a tuning parameter for 3-D buffer layer dynamics
which can not be captured by ODT [14,19]. A detailed procedure and all of the equations for the calculation ofEkin,Evp, the kernel
coefficients ck and bk in Eq. (1), as well as the exact (equality) definition of Eq. (4), can be found in Lignell et al. [16,22].
The evaluation of �, and subsequently of � by Eq. (3) allows the calculation of a probability P defined by the ratio between

the potential outcome � and all possible potential eddies denoted by the global rate Λ =
´ ´

�dr0dl. The calculation of Λ is
too expensive in terms of computational cost, and therefore, an approximation of the acceptance probability of the eddy, Pa,
is estimated on the basis of the thinning and rejection methods [16,22]. In the thinning method, eddies are sampled in time (or
streamwise direction) as a Poisson process. In the rejection method, eddies are accepted based on the ratio between the unknown
P and P̂ . The product from the acceptance probabilities by the thinning and rejection methods, Pa = Pa,tPa,r, leads to [16,22],

Pa,T−ODT =
�(r0, l, t)Δtsampling

P̂ (r0, l)
or Pa,S−ODT =

�(r0, l, x)Δxsampling
P̂ (r0, l)

. (5)

Algorithmically, the calculated Pa of every candidate eddy leads to the decision of acceptance or rejection of the eddy.Δtsampling
(or Δxsampling) are variable sampling time (or streamwise) intervals, which are adjusted dynamically during the simulation, in
order to ensure that Pa < 1 [16,22].
We note that due to the sampling from P̂ , the eddy selection algorithm may ocassionally implement unphysically large

eddies [14]. As in Schmidt et al. [19], we address this topic from the physical point of view of restricting the places where eddies
can occur by their maximum length-scale Lmax. This is based on the assumption of the limitation of the turbulent stirring due
to the walls. By restricting the eddy event size by construction, the Large-Eddy-Suppression mechanism typically done in ODT
formulations can be avoided for wall-bounded flows such as channel or pipe flows [19]. Unlike C or Z, Lmax is normally not
considered a model parameter in the ODT literature and is generally not subject to detailed sensitivity studies. This is because
Lmax values are effectively bounded between 0 and the ODT domain length. Furthermore, very small values of Lmax may result
in the complete suppression of turbulent transport in limited wall-bounded flow, due to the small eddy counterpart suppression
by the Z parameter. Due to this reason, the range of values for Lmax is very reduced in comparison to C or Z.
Finally, we discuss now an important limitation of the model regarding the application of the S-ODT formulation for channel

and pipe flows. We note that momentum conservation before and after the eddy event in the T-ODT formulation implies,ˆ r0+l

r0
�[f (r)]

{

uk[f (r)] + ckK(r) + bkJ (r)
}

rdr =
ˆ r0+l

r0
�[f (r)]uk[f (r)]rdr. (6)
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The reader should note that, strictly speaking, the RHS of Eq. (6) shows the mapped profiles �[f (r)] and uk[f (r)] instead of
the original profiles �(r) and uk(r), due to the necessary condition for mass conservation in the line during an eddy event.
Mass conservation is obtained by the measure preserving property of the triplet map transformation while mapping the density´
�(r)rdr =

´
�[f (r)]rdr. Since the transformation rule is applied simultaneously to all of the flow variables, the starting point

for the discussion of the energy redistribution procedure due to the implementation of the kernel functionsmust consider the post-
mapped scalar profiles. This is analogous in S-ODT. For S-ODT in cylindrical pipe flow, the resulting momentum conservation
gives, ˆ r0+l

r0
�[f (r)]u1[f (r)]

{

uk[f (r)] + ckK(r) + bkJ (r)
}

rdr =
ˆ r0+l

r0
�[f (r)]u1[f (r)]uk[f (r)]rdr. (7)

The appearance of u1 arises from the net streamwise momentum flux in the spatial formulation. As explained by Krishnamoor-
thy [18] for the cylindrical formulation, and by Ashurst and Kerstein [28] for the planar formulation, Eq. (7) is not internally
consistent, since the factor u1[f (r)] is multiplied both in the LHS (at the end of the eddy event) and RHS (after/before triplet
mapping). Instead of the fully mapped and kernel-transformed function on the LHS, only the mapped function appears. This is
normally not a problem, since the traditional spatial formulation considers one additional step for the eddy implementation, in
which the discretized cell boundaries are moved to new lateral locations in order to conserve streamwise fluxes [28]. That is, a
coordinate transformation r→ r̂ takes place after mapping, such thatˆ R

−R
�[f (r)]

{

u1[f (r)] + c1K(r) + b1J (r)
}

r̂dr̂ =
ˆ R

−R
�[f (r)]u1[f (r)]rdr. (8)

Eq. (8) is the solution for streamwise momentum conservation based on lateral displacements along the entire computational
domain, from −R to R. We note that the identity rdr = dr2∕2 should generally be used in order to avoid confusion with the
sign of r. This should be done in all expressions containing rdr in this work, unless noted otherwise. All integrals are solved on
a cell-wise basis with a Finite Volume Method (FVM). The center cell (containing r = 0) is treated as a symmetric cell, with
size equal to Δrc = 2rface (this also implies Δr2c∕2 = r2face). An important limitation arises in the spatial formulation at this
point. For wall-bounded flows such as the channel and pipe flow problems discussed here, there cannot be any cell displacement
at the domain boundaries. Since Eq. (8) cannot be used, Eq. (7) is inherently non-conservative in a variable density spatial
formulation that involves closed lines. Nonetheless, it is always possible to force consistency of Eq. (7) if both bk and ck are 0.
This is achieved by setting the ODT model parameter � = 0 (see [28] for details). � is an ODT model parameter governing the
redistribution (if any) of kinetic energy among the velocity components. By taking � = 0, all of the kinetic energy remains in
the streamwise velocity component and therefore, the measure preserving property of the triplet map transformation ensures
conservation of streamwise momentum flux. The latter is the approach followed in this work for the S-ODT formulation.

2.2 Deterministic momentum diffusion and enforcement of mass and energy conservation
2.2.1 Temporal ODT Formulation
For ease of understanding, we begin the derivation of the deterministic equations with a review of the temporal formulation [22]

and we discuss afterwards, based on these considerations, the suitability of a spatial formulation for closed ODT lines, i.e. lines
bounded by walls, such as those present in a pipe-flow.
Formulations in this work are based on a Lagrangian framework [16]. The planar (or Cartesian) form of the equations for

momentum diffusion is derived in Lignell et al [16]. Therefore, we focus on the derivation for the cylindrical form of the equations.
The reader is also encouraged to consult the work of Sutherland et al. [29] for a detailed derivation of several planar ODT formula-
tions. Before proceeding to the derivation of the deterministic equations, we stress that all of the expressions used here related to
conservation of mass, momentum and energy, refer to the conservation of these quantities considering only linear effects during
the deterministic advancement. During an eddy event, these quantities are satisfied by construction, as we detailed in Section 2.1.
The temporal ODT formulation (T-ODT) for pipe flow can be visualized as a fixed ODT line in the radial direction of a pipe.

The temporally developing flow across the line is simulated in this formulation. Conservation of mass within a Lagrangian
system Ω results in,

d
dt

ˆ
Ω
�dV = 0. (9)

Here, dV is the volume differential in the Lagrangian system Ω, and � is the density. For an incompressible and radially closed
system, i.e., a pipe, Eq. (9) is trivially satisfied given that neitherΩ nor � are time-dependent functions. Likewise, any formulation
and solution for energy conservation is also trivial, as it is normally the case for incompressible, adiabatic, and non-reactive
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flow. We focus, therefore, in the expression for conservation of 3-D momentum, i.e. �V⃗ = �[u, v,w]T , constrained to a 1-D
system [22], and following the nomenclature in Figure 1 .

d
dt

ˆ
Ω
�V⃗ dV = −

ˆ
V
(∇ ⋅ pI)dV +

ˆ
V
(∇ ⋅ �)dV. (10)

In Eq. (10), p is the hydrodynamic pressure, � is the shear stress tensor and I is the identity matrix. We work with a cylindrical
coordinate system which allows both positive and negative values of r. This is illustrated in Figure 1 . A 1-D cylindrical section,
or ring, is characterized by an arbitrary swept angle Δ�, some shell thickness Δx, and a differential radial element dr. This leads
to a volume differential element dV = rdrΔxΔ� for any cylindrical sector resembling the one shown in Figure 1 .
We now consider streamwise momentum conservation for simplicity, i.e. the scalar version of Eq. (10) for the u compo-

nent of V⃗ . For the streamwise direction, the equivalent shear stress divergence in Eq. (10) takes the form (1∕r)[)(r�rx)∕)r] +
(1∕r)()��x∕)�) + )�xx∕)x. In the one-dimensional formulations used with ODT, we neglect the last two terms in the previ-
ous expression. The reader should note that �rx = �)u∕)r, whereby � is the dynamic viscosity. For the pressure gradient, the
applicable term is )p∕)x, which can be decomposed into mean and fluctuating components, )p∕)x and )p′∕)x. The mean com-
ponent is constant for incompressible channel or pipe-flow (in our case, a Fixed Pressure Gradient forcing, FPG). The effect
of the fluctuating component can be ignored during the diffusion evolution, since it is part of the turbulent transport modeling.
These considerations lead to,

d
dt

ˆ
�urdr = −

ˆ
)p
)x
rdr +

ˆ
1
r
)
)r

(

r� )u
)r

)

rdr. (11)

Eq. (11) is discretized by means of a Finite VolumeMethod (FVM). Details of the discretization and numerical method are given
in APPENDIX B. We note that Eq. (11) might encounter an apparent singularity at r = 0. We avoid this singularity by using a
symmetric center cell with fixed size, and solving a flux equalization condition for this cell (see APPENDIX B for details).
The framework developed so far also allows us to formulate an integral conservation expression for passive scalars. Here, we

take the example of the passive temperature T , where all fluid properties are assumed constant, i.e. the specific heat at constant
pressure cp, the thermal conductivity �tℎ, and the density �,

d
dt

ˆ
�cpT rdr =

ˆ
1
r
)
)r

(

r�tℎ
)T
)r

)

rdr. (12)

Unlike in the T-ODT momentum equation, Eq. (10), there is no pressure gradient term directly responsible for forcing the flow
in Eq. (12), or at least not one which can be recognized straightforwardly. If Dirichlet boundary conditions are applied for the
temperature distribution, then the initial conditions will relax into a radially uniform distribution. However, it is possible to force
the flow in order to achieve a statistically steady state as in the case of the statistically steady channel flow velocity distribution.
For that, a mean streamwise temperature gradient )T ∕)x can be calculated. An analytical derivation of )T ∕)x in a pipe flow is
possible for the cases where the fluid properties are assumed uniform along the pipe radius [30]. This approximation is therefore
valid in a pipe flow passive temperature case. For these cases, the forcing term can be added in the LHS of Eq. (12) as an
advective term of the form

´
(�ucp)T ∕)x)rdr.

For completeness, we repeat the resulting expression for streamwise momentum conservation in the planar case (channel
flow), for an ODT line coinciding with the wall-normal direction y. This expression was already derived in [16],

d
dt

ˆ
�udy = −

ˆ
)p
)x
dy +

ˆ
)
)y

(

� )u
)y

)

dy. (13)

We note that for the v and w velocity components in the planar case, the resulting expressions are essentially the same as Eq.
(13), except for the pressure gradient term that is ignored [16]. For the cylindrical case, however, we do not derive expressions
for v and w due to theoretical considerations (see Section 3.2.1).

2.2.2 Spatial ODT Formulation
The spatial ODT formulation (S-ODT) is a 2-D approximation of a quasi-stationary flow. In S-ODT, the ODT line moves along
the streamwise direction in order to reconstruct a static 2-D picture of the flow. Considering the changes in mass only due to the
net difference in mass fluxes entering and leaving the Lagrangian system Ω through the system boundary S, we can obtain the
following expression for mass conservation, ˆ

Ω
∇ ⋅

[

�
(

V⃗D − V⃗S
)]

dV = 0. (14)
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V⃗S = [0, vs, 0]T is the boundary velocity of our 1-D Lagrangian system Ω, while V⃗D = [uD, vD, wD]T is the deformation or
displacement velocity of the system, which tries to conserve mass by compensation of 3-D fluxes. For a 2-D flow, the zero
thickness of our 1-D cylindrical ring allows us to accomodate incoming and outgoing momentum fluxes in the radial direction,
leaving the task of balancing streamwisemomentum fluxes as the solution of a streamwise parabolic-type flow. The 2-D approach
supposes the homogeneity of fluid properties in spanwise or tangential direction for channel and pipe flows, respectively. With
these considerations, Eq. (14) can be rewritten in a cylindrical system as,

ˆ )
(

�uD
)

)x
rdr = 0. (15)

For open ODT domains, continuity has been traditionally solved by means of a first-order approximation in the streamwise
direction (see [16,29,22] for details). For the case studied here, a first-order approximation of Eq. (15) will result, in general, in
an expanded or contracted volume V1 ≠ V0. This is physically not applicable for our wall-bounded pipe/channel systems, and
therefore a new solution approach must be pursued. This problem is also present in the T-ODT formulation for cases where
density is variable. The alternative approach here is motivated by the solution procedure for closed systems detailed in Medina
et al [21]. For that, we resort to a differential Lagrangian formulation. The Lagrangian differential momentum Partial Differential
Equation (PDE) can be written as,

�uD
du
dx

= −
)p
)x

+ 1
r
)
)r

(

r� )u
)r

)

. (16)

Due to the spatial formulation, we defined the Lagrangian derivative operator d∕dt as (uD)d∕dx. Therefore, there exists an
implicit change of variables uD = dx∕dt. Now consider again the cylindrical coordinate system from Figure 1 . Due to the 2-D
formulation, we can choose the shear stress divergence as (1∕r)[)(r�rx)∕)r] + )�xx∕)x for the u velocity component. Although
this is theoretically consistent, preserving both the radial and axial terms in the shear stress results in an elliptic PDE. This is not
solvable as a spatial marching problem, and it is also not clear how this would affect the instantaneous eddy event implementation.
This is one of the main limitations of the S-ODT formulation [28]. For this reason, the axial shear stress gradient is also neglected
in our spatial formulation. A similar reasoning forbids the use of a variable axial pressure gradient )p∕)x. At most, a constant
forcing FPG )p∕)x can be imposed, as in the T-ODT formulation.
Simultaneous enforcement ofmass and energy conservation is given by the zero divergence condition in the zeroMach number

limit. However, this is again another limitation in our spatial formulation for a pipe flow, since the divergence condition for a 2-D
flow mandates )uD∕)x + (1∕r)[)(rvD)∕)r] = 0. Note that we use the velocity V⃗D in the divergence condition, motivated by the
understanding of V⃗D as a flux velocity, V⃗D ≠ V⃗ , where V⃗ is the Lagrangian velocity of the system. In order to find an expression
for )uD∕)x that can be substituted in the divergence condition, an elliptic operator such as the pressure in the streamwise
momentum equation must be applied. Since we required a constant axial pressure gradient, as in the temporal formulation, we
can expect that )uD∕)x in the divergence condition will only be satisfied in the forced fully developed regime, when uD = u.
Therefore, we can not consider the 2-D divergence condition due to its relation with the elliptic character of the flow. Instead,
a 1-D divergence condition (1∕r)[)(rvD)∕)r] = 0, must be enforced. However, this is again trivially satisfied for a constant
radial velocity vD, implying a cancellation of the radial momentum or radial mass flux, thus automatically preserving the radius
constraint of the pipe.
Since no divergence condition for uD can be used, we must change the weak differential formulation into a strong formulation

for d(�uDu)∕dx. Here, however, we take then uD = u, as commented before. Since the density is constant, we rewrite the
differential streamwise momentum flux equation as,

�du
2

dx
= −

)p
)x

+ 1
r
)
)r

(

r� )u
)r

)

. (17)

The numerical method used to solve Eq. (17) is detailed in APPENDIX B. We note that a solution for Eq. (17) might involve
positive and negative roots for the streamwise velocity u. However, other velocity components should evolve independently
during diffusion. Also, due to the application of the FPG, strictly positive velocity profiles will remain positive, thus allowing
the consistency with the spatial marching solution approach.
For completeness, the momentum conservation for the spatial formulation in the planar case (channel flow) is

�du
2

dx
= −

)p
)x

+ )
)y

(

� )u
)y

)

. (18)

We do not consider the resulting terms for the v and w momentum equations, since our spatial eddy event formulation forbids
the use of more than one velocity component for the channel and pipe-flow cases (see Section 2.1). The temperature scalar
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equation is not considered in the spatial formulation since we only work with Dirichlet temperature boundary conditions. In
order to force a statistically steady temperature distribution in the spatial formulation, a heat flux boundary condition is required
at the wall. This is because imposing a fixed )T ∕)x as a source term is in conflict with solving an equation for streamwise
temperature advancement in the spatial formulation. Rather, the heatflux, from which the term )T ∕)x is calculated, must be
used as a boundary condition.

3 STATISTICAL QUANTITIES IN ODT REALIZATIONS

As shown in Kerstein et al. [17], equivalences between statistical DNS and ODT quantities can be made based on the compari-
son of the mean ODT and Reynolds-Averaged Navier-Stokes (RANS) momentum equations. In this section we illustrate these
equivalences from the point of view of Reynolds stresses and Turbulent Kinetic Energy (TKE) budgets for the planar case, sum-
marizing the findings in Kerstein et al [17]. Afterwards, we introduce the equivalences for the cylindrical case. For convenience,
an index notation is used for velocity components in this section. All of the findings in this section can be generalized for the
passive scalar conservation laws.

3.1 Planar Reynolds Stresses and TKE budgets
3.1.1 Planar T-ODT formulation
A mathematical representation of the generalized T-ODT momentum evolution equation in the planar case is given by the
differential expression of Eq. (13) in an Eulerian framework, with constant density � and assumed kinematic viscosity �,

)u1
)t

= −1
�
)p
)x

+ �
)2u1
)y2

+M1 +K1. (19)

We use u1 = u in the index notation. Here, the advective term has been omitted due to the effective zero mean advection of
the flow and the turbulent advection representation by eddy events.M1 + K1 stands for the combined effect of the triplet-map
(M1), pressure scrambling (S1) and turbulent transport contribution (T1) in the ODT velocity component u1 [17]. According to
the definition of the model, K1 is selected in such a way that K1 = T1 + S1, where S1 = 0 is defined for convenience due to the
absence of pressure scrambling contributions in the mean Navier-Stokes momentum equation [17]. It is possible to compare Eq.
(19) with the steady state channel flow RANS momentum equation,

0 = −1
�
)p
)x

+ �
)2u1
)y2

−
)u′1u

′
2

)y
. (20)

In this context, the mean T-ODT momentum evolution is,

�
��
)u1
)t

= −1
�
)p
)x

+ �
)2u1
)y2

+M1 + T1. (21)

Here, we have used the standard temporal Reynolds average operator, noted in general with overbars, to achieve the statistically
stationary state on the LHS. It is then straightforward to verify that the equivalence of the Reynolds stress component u′1u

′
2 in

the T-ODT planar case is given by,
−u′1u

′
2 =
ˆ yw

y
(M1 + T1)dy∗. (22)

Here, the yw integration boundary refers to the position of the wall. Operationally,M1+T1 is defined by changes in the velocity
profiles due to eddies. Considering the stochastic interaction in Eq. (19) within a given interval of time Δt in which eddies are
deemed to occur,

∑
(

Δu1
)

eddies

Δt
=M1 + T1. (23)

AveragesM1 + T1 can then be constructed based on the cumulative sum of changes in the u1 velocity profiles due to eddies.
For the evaluation of the TKE Budgets, the starting point is the momentum evolution equation, Eq. (19), multiplied by the u1

velocity component (kinetic energy of the u1 velocity component),

1
2
)u21
)t

= −
u1
�
)p
)x

+ �u1
)2u1
)y2

+M11 +K11 →
)u21
)t

= −
2u1
�
)p
)x

+ �
)2u21
)y2

− 2�
(

)u1
)y

)2

+M11 +K11. (24)
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Here,M11 +K11 is the sum of the mappingM11, transport T11 and pressure scrambling S11 contributions to the kinetic energy
of the u1 velocity component.
Averaging Eq. (24) and using the identities u21 − u1

2 = u′21 , I1 =
´
(M1 + T1)dy, and I11 =

´
(M11 + T11)dy, along with Eq.

(21) multiplied by 2u1, an equation for the average of the square of the fluctuation velocity u′1 can be obtained
[17],

)u′21
)t

= �
)2u′21
)y2

− 2�
()u′1
)y

)2

+
[

)
)y

(

I11 − 2u1I1
)

+ S11

]

+ 2I1
)u1
)y
. (25)

Comparing Eq. (25) to the generalized TKE equation in a Cartesian coordinate system (see, e.g., Eq. (5.164) from Pope,
2011 [10]), it is possible to deduce that an accurate representation of the flow can be obtained by summing up the contributions by
u′21 , u

′2
2 , u

′2
3 , such that TKE = (1∕2)(u

′2
1 + u

′2
2 + u

′2
3 ). That is, � ≠ 0 in the ODT model. The most reasonable choice is to consider

� = 2∕3, which implies equal available energy redistribution after an eddy event. The equations for u′22 , u
′2
3 are similar to Eq.

(25), with u′22 , u
′2
3 substituting u′21 . As in Kerstein et al.

[17], the resulting TKE budgets for production P and dissipation D are,

P =
∑

k
Ik
)uk
)y

, D =
∑

k
�
()u′k
)y

)2

. (26)

3.1.2 Planar S-ODT formulation
The instantaneous momentum evolution in the spatial formulation is, following from Eq. (18),

)u21
)x

= −1
�
)p
)x

+ �
)2u1
)y2

+M1 + T1. (27)

Averaging Eq. (27), by means of a streamwise Reynolds average operator, analogous to the temporal average operator, results in

)u21
)x

= −1
�
)p
)x

+ �
)2u1
)y2

+M1 + T1. (28)

We note that for a fully developed incompressible channel (or pipe) flow, the equivalence between temporal and spatial homo-
geneity allows us the application of the previously mentioned streamwise Reynolds average operator. Comparing this expression
with the traditional Navier-Stokes equation for momentum conservation in an Eulerian framework, results in the equivalence
M1 + T1 = )u1u2∕)y. We can then deduce, equivalent to T-ODT,

u′1u
′
2 = u1u2 −���u1 u2 =

ˆ y

yw
M1 + T1dy∗. (29)

Note that in Eq. (29), the term u1 u2 was neglected due to the absence of mean advection in the cross-wise direction. In this
case, the Reynolds stress component u′1u

′
2 is also given by Eq. (22).M1 + T1 is calculated accounting for the changes in the u21

velocity profiles, in contrast to Eq. (23) in the temporal case.
∑

(

Δu21
)

eddies

Δx
=M1 + T1. (30)

The TKE flux equation based on the u1 velocity component is in this case very similar to the T-ODT formulation. For the
spatial formulation, we focus here only on the production and dissipation budgets. Following a similar derivation procedure and
accounting for � = 0 in the spatial formulation, it is then possible to obtain the corresponding expressions for the production P
and dissipation D,

P = I1
)u1
)y
, D = �

()u′1
)y

)2

. (31)

3.2 Cylindrical Reynolds Stresses and TKE budgets
3.2.1 Cylindrical T-ODT formulation
We now introduce for the first time the derivation of the ODT TKE equation for the cylindrical formulation. This derivation
allows a very important insight regarding assumptions done in the cylindrical ODT formulation. In order to derive the cylindrical
TKE budgets, we follow the same methodology as in the planar case.
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The generalized T-ODT cylindrical momentum equation is given in this case by the differential version of Eq. (11) in an
Eulerian framework,

)u1
)t

= −1
�
)p
)x

+ �
r
)
)r

(

r
)u1
)r

)

+M1 + T1. (32)

Eq. (32) is compared with the steady pipe flow RANS momentum evolution,

0 = −1
�
)p
)x

+ �
r
)
)r

(

r
)u1
)r

)

−
)u′1u

′
2

)r
−
u′1u

′
2

r
. (33)

Here u′1u
′
2 = u

′v′. Therefore, the mean T-ODT momentum evolution is in this case,

�
��
)u1
)t

= −1
�
)p
)x

+ �
r
)
)r

(

r
)u1
)r

)

+M1 + T1. (34)

Comparing Eqs. (33) and (34), the Reynolds stress component u′1u
′
2 in the T-ODT cylindrical case is then formally defined by

−u′1u
′
2 =

1
r

ˆ R

r
(M1 + T1)r∗dr∗ = I1. (35)

M1 + T1 can be calculated just like in the planar case by means of Eq. (23).
The kinetic energy evolution equation for the u1 axial velocity component is,

1
2
)u21
)t

= −
u1
�
)p
)x

+ �
u1
r
)
)r

(

r
)u1
)r

)

+M11 +K11,

)u21
)t

= −
2u1
�
)p
)x

+ �
r
)u21
)r

+ �
)2u21
)r2

− 2�
(

)u1
)r

)2

+M11 +K11.
(36)

Analogous to the planar case, the TKE equation based on the u1 axial velocity component can be obtained as

)u′21
)t

= �
r
)
)r

⎛

⎜

⎜

⎝

r
)u′21
)r

⎞

⎟

⎟

⎠

− 2�
()u′1
)r

)2

+ 1
r
)
)r

[

r
(

I11 − 2u1I1
)]

+ 2I1
)u1
)r

+ S11. (37)

Here, we have used the identity I11 = (1∕r)
´
(M11 + T11)rdr. A subtraction and addition of 2I1)u1∕)r is required, just as in the

planar case, in order to obtain the final expression. It is interesting to note that in comparing this expression to the generalized
TKE equation in cylindrical coordinates (see, e.g. Eqs. (B.31-B.33) in Shiri, 2010 [31]), a series of terms could be missing in the
model if we try to generalize Eq. (37) to the radial and tangential fluctuating velocity components u′22 and u′23 . In a cylindrical
coordinate system, the diffusion evolution equations for u2 and u3 do not have in general the same terms as u1 (in contrast to the
planar case). In this sense, the budget terms obtained by analyzing Eq. (37) represent only radial fluxes, a radial TKE production
term, and interestingly enough, a planar dissipation component. In order to be able to obtain a more consistent representation
of the TKE budget terms in a vector formulation, different equations for the radial and tangential velocity components would
be required, not only in the diffusion evolution PDEs, but possibly in the same eddy implementation procedure. Although this
is a minor technicality, given that the non-streamwise velocity components are just interpreted as energy containers in the ODT
vector formulation [17], we maintain a consistent representation by applying a scalar treatment of the momentum and energy,
i.e., we restrain our choice of � in the T-ODT cylindrical formulation to 0. Nonetheless, this is an aspect that could be studied
in future work.
Due to the before mentioned shortcomings, and in order to guarantee consistency, we conclude in this section that for the case

of the cylindrical model formulation, at least in this study, the ODTmodel parameter � should be set to 0. With this consideration,
the radial and tangential velocity components remain 0 and the TKE budgets are consistently represented by Eq. (37) only.
The production and dissipation terms are consequently defined based on Eq. (37),

P = I1
)u1
)r
, D = �

()u′1
)r

)2

. (38)
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3.2.2 Cylindrical S-ODT formulation
Similar to the temporal formulation, the generalized spatial ODT cylindrical momentum evolution for u1 is given by

)u21
)x

= −1
�
)p
)x

+ �
r
)
)r

(

r
)u1
)r

)

+M1 + T1. (39)

Averaging Eq. (39), results in
)u21
)x

= −1
�
)p
)x

+ �
r
)
)r

(

r
)u1
)r

)

+M1 + T1. (40)

As in the planar case, u′1u
′
2 = u1u2 − u1 u2, where u2 = 0 due to the absence of mean advection in the radial direction. Conse-

quently, the Reynolds stress component u′1u
′
2 is calculated as in the temporal formulation by Eq. (35). The calculation ofM1+T1

is done exactly as in the planar spatial case via Eq. (30). The production P and dissipation D budgets for � = 0 (one velocity
component) are given by Eq. (38).

4 INCOMPRESSIBLE PIPE AND CHANNEL FLOW RESULTS FOR MODERATE TO
LARGE REYNOLDS NUMBERS

4.1 Flow configuration
The details of the simulations performed are given in Tables 1 and 2 . All simulations are initialized with constant velocity
profiles. Simulations are run without statistical data gathering until the transient effects disappear. Afterwards, online averages
and cumulative sums are gathered and updated after eddy events and after diffusion catch-up events, as discussed in Section 3.
The data is gathered until the statistical convergence of the desired quantities is achieved.
The ODT code used in this work is written in C++ and utilizes an adaptive grid [22]. Themost important parameters controlling

the mesh adaption process are the minimum and maximum cell size allowed during the adaption dxmin and dxmax, as well
as the grid density factor controlling the approximate number of cells generated after the adaption process gDens. The factor
gDens determines the number of cells to be generated based on the redistribution calculated by the equipartition of arc lengths
in a given adaption interval [16]. These parameters are also given in Tables 1 and 2 . Another parameter related to the effects
of mesh adaption in the cylindrical formulation, DATimeFac, is explained and evaluated in Section 4.2.

TABLE 1 Parameters used for channel flow simulations (Temporal and Spatial formulation). � refers to the Kolmogorov length
scale.

Parameter (Case) Re� = 590 (A) Re� = 934 (B) Re� = 2003 (C)

Domain Length L (m) 2.0 2.0 2.0
Density � (kg∕m3) 1.0 1.0 1.0
Kinematic viscosity � (m2∕s) 1.6949 × 10−3 1.0707 × 10−3 0.9985 × 10−3

FPG Forcing )p∕)x (Pa∕m) −1.0 −1.0 −4.0

Mesh adaption parameter dxmin = η∕3 (m) 5.6496 × 10−4 3.5688 × 10−4 1.6642 × 10−4

Mesh adaption parameter dxmax (m) 0.04 0.04 0.04
Mesh adaption parameter gDens 80.0 80.0 80.0
Mesh adaption parameter DATimeFac 4.0 4.0 4.0

ODT parameter C 6.5 (T-ODT) / 3.0 (S-ODT)
ODT parameter Z 300.0 (T-ODT) / 100.0 (S-ODT)
ODT parameter � 2∕3 ≈ 0.6667 (T-ODT) / 0.0 (S-ODT)
Eddy-size PDF Lmax (normalized by L) 1∕3 ≈ 0.3333
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TABLE 2 Parameters used for pipe flow simulations (Temporal and Spatial formulation). � refers to the Kolmogorov length
scale and ΔrC to the assumed symmetric center cell size.

Parameter (Case) Re� = 590 (A) Re� = 934 (B) Re� = 2003 (C)

Domain Length 2R (m) 2.0 2.0 2.0
Density � (kg∕m3) 1.0 1.0 1.0
Kinematic viscosity � (m2∕s) 1.8182 × 10−3 1.0 × 10−3 0.9985 × 10−3

FPG Forcing )p∕)x (Pa∕m) −2.0 −2.0 −8.0

Mesh parameter ΔrC (m) 0.04 0.0222 0.0111
Mesh adaption parameter dxmin = η∕3 (m) 6.0606 × 10−4 3.3333 × 10−4 1.6642 × 10−4

Mesh adaption parameter dxmax (m) 0.04 0.04 0.04
Mesh adaption parameter gDens 80.0 80.0 80.0
Mesh adaption parameter DATimeFac 4.0 7.3 14.5

ODT parameter C 5.0 (T-ODT) / 3.0 (S-ODT)
ODT parameter Z 350.0 (T-ODT) / 100.0 (S-ODT)
ODT parameter � 0.0
Eddy-size PDF Lmax (normalized by L) 1∕3 ≈ 0.3333

Optimal ODT C and Z parameters are shown in Tables 1 and 2 , along with the suggested value of Lmax for the assumed
eddy size PDF used by ODT, as explained in Section 2.1. The C andZ parameters were obtained after a model calibration study
detailed in APPENDIX C. Influence due to the assumed value of Lmax is investigated in Section 4.2.
Despite the parameters mentioned above and listed in Tables 1 and 2 , we emphasize that, as discussed in Section 2.1, the

only effective ODT model parameters are C and Z. As it has been proved in previous ODT investigations [15,32], there exists a
Reynolds number dependence of the Z parameter for the bulk region of the velocity profile. Additionally, for lower Reynolds
numbers, there exists a dependence on the ODT parameter C , given that a C value of 0 is indicative of a laminar flow (no eddy
events implemented). For this work, however, we found an excellent Reynolds number scaling for the calibrated (and therefore
Re� independent) C and Z values between Re� ≈ 550 and Re� ≈ 2000, as shown in APPENDIX C. This can be related to the
continued collapse of the scaled profiles at larger Reynolds numbers. Lignell et al. [22] also show results comparing ODT round
jets and pipe flow results as evidence of this collapse and of the insensitivity of the mean velocity profiles to ODT parameters
at large bulk Reynolds numbers (Reb ≈ 100, 000). Mesh adaption related parameters are only sensitive to the results for grid
dependent studies, as in any non-resolved, implicit LES. However, as we will show in Section 4.2, some of these mesh adaption
related parameters may have an exaggerated effect on the numerical diffusion, if an improper scaling is considered.

4.2 Sensitivity to Lmax and DATimeFac parameters
4.2.1 Influence of the parameter Lmax
As we will show, the qualitative influence of Lmax on the mean velocity profiles is generally the same for all Reynolds numbers
evaluated. As shown in Schmidt et al. [19], Lmax affects the mean velocity profiles for the channel flow case in the outermost
region from the wall. This parameter was estimated to have an optimal normalized value of 0.5 [19]. Krishnamoorthy [18] also
verified the influence of Lmax on the pipe flow configuration, estimating an optimal normalized value of 0.3333.
Figure 2 shows the influence of Lmax on the T-ODT formulation for channel and pipe flow. In this study we chose the same

value ofLmax for both the pipe and channel flow configurations, motivated exclusively by consistency between both formulations.
We note that it is possible to obtain calibrated parameters that match DNS data with the normalized value of Lmax = 0.5 [19,15],
however, we did not do this due to consistency with the cylindrical formulation. It is possible to obtain calibrated parameters that
reasonably match DNS data with a normalized value of Lmax equal to 0.3333 for both the planar and cylindrical configurations.
Qualitatively, Lmax has the same impact in both the channel and pipe flow configurations. Generally speaking, larger values of
Lmax seem to promote more mixing close to the centerline, thus resulting in a flatter velocity profile near the centerline.
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FIGURE 2 Influence of the ODT parametersLmax and DATimeFac on the normalized wall-normal pipe and channel flowmean
velocity profiles. Pipe flow results are shown for Re� = 550 and compared to DNS results from Khoury et al [24]. Channel flow
results are shown for Re� = 590 and compared to DNS results from Moser et al [25]. Channel flow results have been shifted
upwards for better visualization: a) shows the influence of Lmax and b) the influence of DATimeFac.

4.2.2 Influence of the parameter DATimeFac
Despite being seldomly discussed in ODT simulations, one last parameter of interest has been calibrated in this work. This
parameter is linked to the performance of the mesh adaption process. Although it was not mentioned in Section 2.1, we remark
that the diffusion catch-up step, which is characteristic of ODT, occurs every time an eddy is implemented, but also anytime that
the diffusion CFL time-stepΔtCFL is exceededwithout any eddy being selected. The diffusion CFL time-step in the deterministic
advancement of an ODT channel flow is given by,

ΔtCFL =
dxmin2

�
=
�2

9�
, (41)

where dxmin is the minimum cell size allowed by the mesh adaption process and � is the Kolmogorov length scale (we assume
a resolution dxmin = �∕3).
The DATimeFac parameter works as a switch to allow mesh adaption after sufficient time has elapsed without any single

eddy being implemented, i.e. time elapsed just performing diffusion steps. For low Reynolds numbers, such as the Re� = 550
case evaluated in this work, successive diffusion steps are prone to occur. Also, due to the flow configuration, the probability
of eddies being selected in the region close to the centerline is lower. Both of these factors contribute to a larger impact of the
mesh adaption process in the region close to the centerline.
Operationally, we can define the DATimeFac as a ratio between a characteristic eddy implementation time-scale and the

diffusion CFL time-step. The mesh adaption procedure should be called if we exceed a thresholdΔtd > (DATimeFac)
(

ΔtCFL
)

,
where Δtd is a time interval proportional to some characteristic eddy implementation time-scale. For channel and pipe flows,
this characteristic eddy implementation time-scale is proportional to �∕u� , the ratio between the half-height of the channel, or
pipe Radius, and the friction velocity.

DATimeFac ∼
Δtd
ΔtCFL

→ DATimeFac = ��
u�
9�
�2
. (42)

In Eq. (42) we have substituted Eq. (41) and inserted a proportionality constant � for Δtd . Eq. (42) allows us to find a scaling
law for DATimeFac as a function of the friction Reynolds number in channel and pipe flows, given that u� = Re��∕�. For
two different friction Reynolds numbers in similar geometric channel or pipe configurations, the relation between two different
DATimeFac factors is,

DATimeFac2 = DATimeFac1
Re�,2
Re�,1

. (43)
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FIGURE 3 Influence of DATimeFac scaling on the normalized wall-normal pipe flow mean velocity profile for Re� =
550, 1000, 2003. DNS results from Khoury et al. [24] (Re� = 550, 1000) and Chin et al. [23] (Re� = 2003) are shown for reference.
The results for increasing Reynolds numbers have been shifted upwards in the plot for better visualization.

Figure 2 shows the influence of DATimeFac in the channel and pipe flow simulations. As in the case of the parameter Lmax,
the influence ofDATimeFac is approximately the same for both the channel and pipe-flow configurations. Based on this analysis,
we select the value ofDATimeFac = 4 as the optimal one for all simulations. We note that the influence ofDATimeFac is almost
negligible in the planar formulation.
We can now calibrate the factor DATimeFac for a given Re�,1 and then find the equivalent DATimeFac2 corresponding to

another Re�,2, as per Eq. (43). This is the approach followed in this work, where the DATimeFac calibration was performed for
Case A in the channel and pipe flow, obtaining the appropriate value of DATimeFac = 4. Evaluating the pipe flow and channel
flow configurations, it was found, however, that the planar (channel) configuration was completely insensitive to the DATimeFac
scaling with the friction Reynolds number scaling. This is not a surprise, since no planar ODT investigation so far has discussed
this parameter. Influence of the scaling was found to be significant in the cylindrical configuration, as shown in Figure 3 .
We attribute the DATimeFac scaling sensitivity in ODT pipe flow to the center cell treatment, as described in APPENDIX

B and APPENDIX D. The forcing of the fixed center cell size provokes an anomaly caused by the mesh adaption after eddy
implementation. This does not occur in the planar formulation. Due to this reason, a delicate balance between the center cell
size and the adaption frequency must be considered in order to achieve a consistent scaling, as in the planar formulation. Finally,
we note that, although the derivation for the DATimeFac sensitivity was done on the grounds of the temporal formulation, we
have verified in our simulations that it also influences the spatial simulations in the same way. We have verified, in fact, that it
is also possible to apply the same scaling law from Eq. (43) in our spatial formulation.

4.3 Comparison between channel and pipe flow statistics
Statistics gathered from the T-ODT temporal and S-ODT spatial formulation comparing pipe and channel flow simulations are
shown in this section. All of the results shown here were obtained with the optimal calibrated parameters presented in Tables
1 and 2 .
The ODT spatial formulation developed in this work is used to show that both T-ODT and S-ODT formulations are consistent

and capable of delivering approximately the same results, something that has never been investigated before. This is a direct
analogy of evaluating snapshots in time (for spatially invariant flows) or in space (for temporal invariant flows) with the purpose
of constructing average behaviors. For a fully developed flow, such as the pipe and channel flows evaluated in this work, both
methods should yield approximately the same statistical results.
The reader should note, however, that simulation times and ODT parameters such as C or Z might vary between the spatial

and temporal formulation. This is based on the subtle differences regarding the eddy implementation procedure and the different
PDEs that are being solved during the deterministic momentum diffusion evolution. It is also important to stress the fundamental
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restriction for spatial formulations in ODT, namely, the exclusive treatment of parabolic problems. This leads to simplifications
and assumptions made during the derivation of the equations, which are not necessarily the same ones as in the temporal
formulation.
Traditional spatial formulations in ODT aim to replicate spatially evolving flows, which would translate, in the context of the

pipe and channel flow cases evaluated here, in boundary layer type-flows with a spatially varying friction Reynolds number.
This is not the case of the spatial formulation introduced in this work, since we are using a FPG forcing. For this reason, our
spatial simulations resemble the temporal simulations: an ensemble average over realizations at a same spatial coordinate is
exactly equivalent to an ensemble average over accumulated realizations in space. The latter is the averaging philosophy applied
in this work for the spatial simulations. In the temporal simulations, an ensemble average over accumulated realizations in time
is considered.

4.3.1 Mean velocity profiles and RMS velocity profiles
The results for the normalized wall-normal mean velocity profile are summarized in Figure 4 for the different Reynolds numbers
evaluated in this work. Note that, as in the DNS from Chin et al. [23] and due to the available DNS results in the literature, the
friction Reynolds numbers from Re� = 590 and Re� = 934 for the channel flow simulations are compared to the Re� = 550
and Re� = 1000 pipe flow simulations. Although these Reynolds numbers from the channel and pipe flow configurations are
not exactly the same, the differences in the comparison are expected to be negligible.
As shown previously for channel flow simulations [15,19], ODT reasonably reproduces the mean velocity profile behavior.

The comparison between DNS and ODT data for pipe flow and channel flow shows that ODT simulations are able to match
the DNS behavior very well in the viscous layer, the inner buffer layer and the logarithmic layer. Differences can be noted
between ODT and DNS in the meso layer and outer buffer layer. These differences are expected, since the buffer layer is mainly
influenced by large scale structures not represented in ODT [15]. The buffer layer representation, however, is improved in ODT
with increasing values of Re� , as seen by comparing the different profiles in Figure 4 . This is due to the achievement of an
asymptotically turbulent regime. In such regimes, ODT is expected to behave better given that large scale motions become less
and less relevant [19].
By comparing ODT results between pipe and channel flow simulations, it is immediately noticeable that the similarity of the

flows is maintained, just as in the DNS. Considering that the recent cylindrical formulation in ODT has not undergone extensive
validation studies, this is an aspect worth stressing. Also, the similarity of the channel and pipe flows is somehow reflected on the
chosen optimal C and Z values for the planar and cylindrical configurations, given that these values are close to each other. As
seen in the DNS results, the ODT behavior for channel flow shows an earlier departure into the logarithmic layer in comparison
to pipe flow.
With the parameters selected for the spatial formulation, the obtained mean velocity profiles lie generally below those of the

temporal formulation. A larger gradient of the velocity profile is noticeable in the logarithmic layer, close to the channel and pipe
centerlines. Note that these results were obtained just by tuning the C and Z parameters in order to achieve a reasonable match
to the DNS data, while preserving model parameters which were very close to their counterparts of the temporal formulation.
The same Lmax and DATimeFac parameters from the temporal formulation were used for the spatial formulation.
It is also interesting to note that, at least for case A, the optimal values for the parameters C andZ are the same ones for both

the pipe and channel flow configurations in the spatial formulation (C = 3.0 and Z = 100.0).
A comparison of the RMS velocity profiles for ODT and DNS channel and pipe flow simulations is shown next in Figure 5 .

In contrast to the mean velocity profiles, the ODT behavior is significantly different from the DNS data, consistent with previous
ODT investigations [15,16]. In the viscous layer, ODT results are slightly shifted in a parallel manner compared to DNS results.
Discrepancies between ODT and DNS become more pronounced after the RMS peak close to the wall is achieved. ODT results
for channel and pipe flow show similar behavior. The RMS double peak in T-ODT results is an intrinsic feature of the triplet
maps used in the model [16], and it must not be confused with the common second peak discussion for pipe flow simulations in
large Reynolds numbers regimes [1,23]. We note that the double peak obtained in the S-ODT formulation is significantly reduced
and almost disappears from the profile. This could be seen as an advantage against the temporal formulation. However, the
position of the peak in the spatial formulation is shifted in comparison to the DNS results.
Since the ODT parameter � was set to 0 in the pipe flow T-ODT simulations (and must be 0 in the S-ODT simulations), the

only RMS velocity profiles that can be obtained from themodel are those shown in Figure 5 (velocity profiles for the streamwise
velocity component). � = 0 also implies that the kinetic energy is fully contained in the streamwise velocity component,
explaining why the RMS profiles for pipe flow ODT simulations lie above the ones for channel flow simulations. For the channel
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FIGURE 4 Normalized wall-normal mean velocity profiles for ODT channel and pipe flow. a) The low friction Reynolds
number case (Case A) is shown along with DNS results from Moser et al. [25] (channel) and Khoury et al. [24] (pipe). b) Case B
results are shown along with DNS results from Hoyas and Jiménez [6] (channel) and Khoury et al. [24] (pipe). c) Case C results
are shown along with DNS results from Hoyas and Jiménez [6] (channel) and Chin et al. [23] (pipe).

flow case in the T-ODT formulation, we used � = 2∕3, thus we show also in Figure 5 the results for the u2 and u3 (v,w)
velocity components in ODT (these results are shown forRe� = 934, case B). Both v andw velocity components have the same
magnitude in ODT in this case. This is due to the model formulation with � = 2∕3 and equal initial conditions for both velocity
components. These RMS velocity profiles are underpredicted in comparison to DNS data. For channel flow at lower Reynolds
numbers, this is consistent with the results of previous ODT publications [17,19].
Figure 6 shows a comparison of the pre-multiplied mean velocity gradient for Case B using the temporal and spatial formu-

lations. In this case, channel DNS results from Jiménez et al. [26] forRe� = 1000 and pipe DNS results from Khoury et al. [24] for
Re� = 1000 were available and used for the comparison. Although the plot dispersion is pronounced in regions far away from
the wall, some general trends from the DNS data [23] are confirmed with ODT. In both DNS and ODT, there is no constant region
of pre-multiplied velocity gradient beyond the point of departure of the outer buffer layer, which indicates that the logarithmic
law does not hold for this case. It is known that such constant profile in the pre-multiplied velocity gradient only starts to appear
in fairly large Reynolds numbers regimes [24]. The trends from Case B are also reproduced for Case C in the current simulations
without any noticeable difference (not shown here). At least for channel flow, as shown by Lee and Moser [7], the constant pro-
file region for the pre-multiplied velocity gradient starts appearing around Re� ≈ 4200, a friction Reynolds number which was
out of scope for this work. We note that the larger noise component of the plot in regions away from the wall, where a second
peak appears between 100 < y+ < 1000, is due to the reduced eddy activity in ODT close to the centerline. The infrequent eddy
events in this region, thus, require larger averaging periods in order to obtain a fully smooth gradient representation. As noticed
in the mean velocity profiles, Figure 4 , we note the larger gradients in the pipe and channel regions close to the centerline in
the spatial formulation. We also note a subtle displacement of the first peak of the plot towards the wall, which coincides with
the behavior obtained for the RMS velocity profiles.

4.3.2 TKE Budgets
Following the methodology explained in Section 3, results concerning the calculation of the Reynolds stresses and the TKE
budgets are shown next.
Figure 7 shows the Reynolds stress component u′v′ in the channel and pipe flow simulations with comparison to DNS data.

The figure shows that it is possible to achieve a remarkable match between ODT and DNS results, with the best results obtained
in the spatial formulation. One point worth stressing is that the calculations done according to Section 3 gathered statistical data
only from one side of the domain for the pipe flow case. The reason behind this methodology is that the derivation of the TKE
budgets equation was done entirely in differential terms. Thus, a Finite Difference Method (FDM) discretization was used and
the origin r = 0 had to be avoided. The results for the Reynolds stress show that the ODT model is effectively able to reproduce
the energetic interactions in both the channel and pipe-flow simulations. The reader should note that the terminology of the
Reynolds stresses used here is the one corresponding to the calculation methods in Section 3.
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FIGURE 5 Normalized wall-normal RMS velocity profiles for ODT channel and pipe flow. (a): the low friction Reynolds
number case (Case A) is shown along with DNS results from Moser et al. [25] (channel) and Khoury et al. [24] (pipe). (b): Case B
results are shown along with DNS results from Hoyas and Jiménez [6] (channel) and Khoury et al. [24] (pipe). (c): Case C results
are shown along with DNS results from Hoyas and Jiménez [6] (channel) and Chin et al. [23] (pipe). (d): Case B results for channel
crosswise and spanwise RMS velocity profiles compared to DNS results from Hoyas and Jiménez [6].

The comparison of the TKE budgets for production and dissipation between the pipe and channel flow simulations is shown
in Fig. 8 for Case B. The TKE production is remarkably well reproduced by ODT for both the pipe and channel flow cases. This
is not a surprise given the agreement of the Reynolds stresses and the mean velocity profiles shown before. In the case of the
TKE dissipation, both ODT results for channel and pipe agree very well with each other, but show some discrepancies with DNS
results. The agreement in both ODT cases is also not surprising, given the fact that the TKE dissipation budget solved for the
cylindrical formulation is planar, as explained in Section 3. The departure between ODT results and DNS for the TKE dissipation
budget can also be partially explained by the overall net TKE magnitude, as seen in the RMS velocity profiles in Figure 5 .
In general, the TKE magnitude in ODT is less than that in DNS, which explains why the dissipation budget lies below that of
the DNS for large production values [33]. Also, the dissipation budget sink very close to the wall indicates that the dissipation is
lower in regions of large production [33]. The latter is a distinct feature of ODT itself, given the instantaneous character of the
1-D eddy events, which are instantaneously created and then subject to diffusive dissipation in the subsequent solution of the
moment transport equations. The dissipation budget of the spatial formulation shows increased values between y+ ≈ 10 and
y+ ≈ 40. This region of increased dissipation is in agreement with the region of dissimilar behavior between the temporal and
spatial formulation in the streamwise RMS velocity profile. Thus, the increased dissipation in this area is apparently an artifact
in the spatial formulation that erodes the second peak in the ODT streamwise turbulence intensity.
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FIGURE 7 Cross-wise Reynolds stress component u′v′ for Case B simulations. DNS results from Lee and Moser [7] (channel)
and Khoury et al. [24] (pipe) are shown along for comparison.

5 INCOMPRESSIBLE PIPE FLOW RESULTS FOR LOW REYNOLDS NUMBERS

We now present results for an incompressible pipe flow simulation at a lower Reynolds number. This test case is a replication
with ODT of the Direct Numerical Simulation (DNS) study by Satake and Kunugi [27]. The test case presents a characteristic
low bulk Reynolds number of Reb = 5286, associated with a friction Reynolds number Re� ≈ 180. Incompressible DNS data
at Re� ≈ 180 taken from Khoury et al. [24] is also used for comparisons in this section.
The T-ODT incompressible formulation uses a time-variable pressure gradient calculation in order to satisfy a constant bulk

velocity complying with Reb = 5286. This is done as a one-step correction on the velocity field, once the momentum equation,
Eq. (11), has been solvedwith a zero pressure gradient. The S-ODT incompressible formulation, however, must rely on a constant
FPG aimed at obtaining the associated friction Reynolds number Re� = 180. In order to obtain the evolution of the passive
temperature in the fully developed flow regime, the temporal formulation uses a temperature equation identical to Eq. (12) with
the additional advecting term

´
(�ucp)T ∕)x)rdr and constant properties. The mean temperature gradient )T ∕)x is calculated

as in the DNS [27]. As commented in Section 2.2.2, we only perform passive temperature simulations in the T-ODT formulation.
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FIGURE 8 TKE Production (P +) and Dissipation (D+) budgets for T-ODT and S-ODT simulations (Case B). DNS results
from Lee and Moser [7] (channel) and Khoury et al. [24] (pipe) are shown for comparison. (a) Production budget. (b) Dissipation
budget.

Trivial initial conditions (uniform profiles) are used for this case. The velocity fields satisfy the no-slip condition at the pipe
wall. For the passive scalar T-ODT formulation, the temperature field satisfies an isothermal fixed Dirichlet temperature value
at the pipe wall. Table 3 summarises the initial conditions for the test case.

TABLE 3 Parameters used for the low Reynolds number simulations. The diameter of the pipe is indicated by D.

Parameter / Formulation T-ODT S-ODT

Target Reynolds number Bulk Reb = 5286 Friction Re� = 180
Momentum Forcing Method Constant bulk velocity Fixed Pressure Gradient (FPG)
Momentum Forcing Constant Ub = 0.2019 (m∕s) )p∕)z = −0.0016 (Pa∕m)
Temperature Forcing Method Fixed Temperature Gradient N/A
Temperature Forcing Constant )T ∕)z = 1.0661 (K∕m) N/A

ODT parameter � 0 0
ODT parameter Z 350 100
ODT parameter C 3.5 1.5

Domain Length D = 2R (m) 0.5
Prandtl Number Pr 0.71 (Air)
Wall Temperature (T-ODT) Tw (K) 359.802
Pressure P (Pa) 101350
Density � (kg∕m3) 1.0553
Kinematic viscosity � (m2∕s) 1.9105 × 10−5

Mesh parameter ΔrC (m) 0.015
Mesh adaption parameter dxmin = �∕6 (m) 2 × 10−4

Mesh adaption parameter dxmax (m) 0.015
Mesh adaption parameter gDens 80.0
Mesh adaption parameter DATimeFac 1.3
Eddy-size PDF Lmax (normalized by 2R) 1∕2 = 0.5
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5.1 Kinematic statistics
Figure 9 compares the mean velocity profiles obtained with T-ODT at Re� = 550 with the ones at Re� = 180. We note a
severe underestimation of the buffer layer and the logarithmic layer in the T-ODT formulation if the same model parameters
from the moderate Reynolds number case are applied in the low Reynolds number case. The most salient feature of these
underestimated velocity profiles is the unphysical increase in the mean velocity gradient in the outer layer, close to the centerline
region, indicating an excessive local relaminarization. Due to this reason, we adjust the parameter Lmax in order to account for
relative infrequent, yet large eddy events, which maymodify the outer layer region.With the less restrictive value ofLmax = 1∕2,
which was already deemed optimal by Schmidt et al. [19], it is possible to reduce the increase in the outer layer gradients and
produce an overall more turbulent outer layer. In Fig. 9 we also show a Cumulative Density Function (CDF) of eddy event
sizes for the Re� = 550 and Re� = 180 cases with model parameters C = 5, Z = 350 and Lmax values of 1∕3 and 1∕2. All
else being equal, we notice that the CDF of eddy event sizes in Fig. 9 shows an abrupt change of slope for the Re� = 180
case with Lmax = 1∕3. This implies an abrupt suppression of the eddy size distribution function, and thus, the suppression
of important physical phenomena. Effectively, the lower Reynolds number of the flow, or conversely, the laminarization of the
flow, provokes that only ever larger eddies are able to induce mixing. We note that the maximum value of Lmax is 1, which
corresponds to an eddy size equal to the length of the domain. Values ofLmax larger than 1∕2, however, imply for a wall-bounded
flow, an eddy larger than the maximum turbulent boundary layer size (half of a channel width, or the pipe radius), which may
not be physical. The necessary shift in the velocity profiles to obtain a relatively reasonable match with the DNS results can be
achieved afterwards by decreasing the overall turbulence intensity, i.e. lowering the value of the C parameter, as seen also in
Figure 9 . Sensitivity to C is expected, given that as C approaches 0, the flow becomes more laminar. Although this sensitivity
to the model parameters might seem conflictive with the traditional argumentation in ODT, the reader must recall that, being
a turbulence model, ODT is best suited for larger Reynolds numbers flows [34]. Indeed, lowering the model parameter C in the
Re� = 180 case from C = 5 to C = 3.5, achieves a better matching with DNS results in the mean profile behavior. The behavior
can be optimized by further decrease of the C value. However, this is not done here, since it would affect the prediction of the
mean temperature profile (not shown). Therefore, a departure from the outer layer of the flow still takes place in comparison to
DNS data: the velocity profiles show a pronounced and steep gradient towards the centerline, and they are still underestimated
in the outer buffer layer and in the early regions of the outer layer.
We now compare the selection of model parameters between the incompressible T-ODT and S-ODT formulations. For sim-

plicity and consistency with the T-ODT formulation, we also choose the valueLmax = 1∕2 for the spatial formulation. We found
a similar sensitivity to the value of C as in the T-ODT formulation. In this case, we must reduce the value of C from C = 3 to
C = 1.5 in order to achieve a reasonable match with DNS results. Figure 10 shows the mean velocity profiles, RMS velocity
profiles and transversal u′v′ Reynolds shear stresses comparing the T-ODT and S-ODT formulations. As expected and due to
the temporal and spatial similarity of the fully developed pipe-flow, although the results obtained with both formulations are not
identical, the obtained statistics agree reasonably well with each other. With the selected model parameters, the S-ODT mean
velocity profile is overestimated in the outer layer region close to the centerline, and it is in general more laminar than its T-ODT
counterpart across the outer buffer layer and the entire logarithmic layer. For the Reynolds shear stress u′v′, there is a reasonable
agreement with DNS data in both T-ODT and S-ODT formulations.
Special attention is given to the RMS velocity profiles in Fig. 10 , where the low Reynolds cylindrical formulation produces

a triple peak in the T-ODT formulation, which contrasts with the double peak obtained with traditional ODT planar formu-
lations [16] and with the results at larger Reynolds numbers. In comparison, the S-ODT formulation shows also a second peak
coinciding with the third peak in T-ODT. This is attributed to the infrequent large scale events which only aid in the reproduc-
tion of the ODT mean velocity profile, but which are completely artificial, given that ODT cannot capture or reproduce such
large scale behaviour.

5.2 Passive temperature statistics
Having obtained the optimal parameters for the incompressible kinematic behaviour of the flow at Re� = 180, we now examine
the results that these parameters produce on the passive temperature behavior using the T-ODT formulation. Figure 11 shows
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FIGURE 10 Comparison of flow statistics between the T-ODT and S-ODT formulations at Re� = 180. a) Mean velocity
profiles. b) RMS velocity profiles. c) Transversal u′v′ Reynolds shear stress. DNS data [24] is shown for reference.

the non-dimensional temperature � profiles comparing the T-ODT passive temperature results with the DNS data. The non-
dimensional temperature � is defined as,

�+ =
Tw − T
T�

, (44)

whereby Tw is the fixed wall temperature and T� is the friction temperature, as in the DNS [27].
For the non-dimensional temperature profile in Fig. 11 , we notice an earlier departure from the DNS data in comparison to

the velocity profile in Fig. 10 . The temperature solution increases notably in the region surrounding the centerline. Indeed, the
temperature profiles obtained with ODT exhibit a much less monotonic behavior in the bulk than the DNS profiles. As in the
velocity field, the region where ODT is expected to behave better, close to the wall, achieves a perfect match with DNS. Overall,
similarities between the temperature and velocity profiles are expected, not only due to the passive character of the temperature,
but also due to the magnitude of the Prandtl number of the flow, which is very close to 1 (Pr = 0.71). Aside from the centerline
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anomaly, the behaviour of the ODT results in the outer buffer layer and the early regions of the outer layer is very close to the
DNS data. The latter is the reason for our final choice of the T-ODT model parameter C = 3.5 in the low Reynolds number case.
The RMS non-dimensional temperature profiles are also shown in Figure 11 . The shallow triple peak seen in the RMS

velocity profiles commented in Section 5.1 is seen again in the temperature profiles. Given that the eddy sampling and selection
procedure from ODT used in this study is merely based on the available kinetic energy of the flow (and a mechanism for eddy
dissipation accounted in a viscous penalty) [28,22], it is not a surprise that the RMS velocity and temperature profiles, which
are an indicator of the stationary radial distribution of the streamwise turbulence intensity and turbulent streamwise heat flux,
respectively, exhibit the same trend. We do note, however, that the radial distribution of the turbulent streamwise heat flux is
much more uniform than its velocity counterpart. This is attributed to the difference in velocity and scalar diffusivities. The
larger scalar diffusivity (in comparison to the kinematic viscosity) is able to dissipate scalar fluctuations much faster than the
kinematic viscosity dissipates velocity fluctuations across the whole pipe diameter. The behavior of the fully developed turbulent
radial heat flux �′v′

+
, also shown in Figure 11 is, again, similar to the transversal Reynolds shear stress. Both of these are able

to achieve a reasonable match in comparison to the DNS results.

6 CONCLUSIONS

A detailed study of the cylindrical ODT formulation was carried out in this work. In contrast to the general framework for the
cylindrical formulation presented in Lignell et al. [22], an exhaustive analysis of the ODT dynamics for cylindrical pipe flow has
been done considering the traditional T-ODT formulation. Additionally, a novel spatial formulation for the channel and pipe
flow configurations was introduced, as a demonstrative way to prove the consistency of the temporal and spatial formulations,
at least in channel and pipe flows, therefore illustrating the capabilities of the model, while simultaneously presenting new ways
to potentially improve results.
Results for the stand-alone ODT model in both its temporal and newly introduced spatial formulations for pipe and channel

flows were shown to be able to achieve satisfactory results whenever compared with DNS data. Replicability of the DNS data
for the wall-normal mean velocity profiles was obtained for all of the formulations. In general, both the planar and cylindrical
ODT formulations are also able to replicate with great accuracy the flow energetics, as shown by the obtained pre-multiplied
velocity gradient and cross-wise Reynolds stress behavior.
A calibration process to achieve Reynolds number independent parameters, in the moderate and large Reynolds number

range studied here, was successfully carried out. Although it could be argued that the obtained model parameters would be
Reynolds number dependent in a range exceeding the one evaluated in this work, it is expected that this sensitivity to the
parameters is reduced with the increase of Re� and the achievement of an asymptotically turbulent regime [19,22,34]. Having said
that, reasonable matches with DNS data were also obtained at the low friction Reynolds number Re� = 180. A dependency of
the ODT turbulence intensity parameter C was, however, observed with decreasing friction Reynolds number. Although ideally
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ODT would be Reynolds number independent (which is effectively true at asymptotically turbulent regimes as commented
before), this is consistent with C approaching 0 for laminar flows, i.e. absence of turbulent advection effects.
Despite the solid results shown for the cylindrical formulation in this work, we proved theoretically that the current formulation

of the model is only able to reproduce radial fluxes and mimic a planar TKE dissipation term. Although this proved sufficient
for this work, it also implies that there is room for improvement in further studies.
Although it was not the main motivation of this work to prove the efficiency of the ODT model against the DNS method,

we stress that all of the ODT simulations carried out for this work used, independently, one core of an Intel i7-2600 CPU with
3.4 GHz and 8GByte memory, working in the most severe case (Case C, Re� = 2003) with around 2000 grid points due to
the adaptive grid implementation. As a reference, the nek5000 pipe flow code used by Khoury et al. [24] required 2.1842 × 109
grid points and employed an available infrastructure of 65,536 cores for the calculation of simulations at Re� = 1000. Also,
the most expensive channel flow simulation performed in this work, that of Re� = 2003, required a computational time with
ODT of approximately 160 CPU-h, while, in contrast, the corresponding channel flow simulation of Hoyas and Jiménez [6]
required a computational time of 6 × 106 CPU-h. Despite the reduced dimensionality of the model, and therefore its limited
applicability range for problems which are homogeneous in at least one direction [14], these details show why the model can be
highly appealing for numerical simulations.
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APPENDIX A CYLINDRICAL TRIPLET MAP

Based on physical reasoning, the cylindrical triplet map formulation is stated for r ∈ ℝ instead of the traditional cylindrical
treatment of r ∈ ℝ+ (non-negative real numbers including 0). This treatment of the cylindrical system allows the occurrence of
eddy events involving the centerline, i.e. eddies are allowed to cross the centerline, as in any physical flow.
Since the line integral in a cylindrical system is defined with a differential element rdr, we opt to conserve an effective surface

in the cylindrical formulation of the triplet map. The effects of the stochastic eddy events, implemented as triplet maps, which
involve wrinkling of the property profiles in the radial direction, can be seen as an assumption that holds for fully developed
pipe flows and which is consistent with the 1-D implementation. However, this assumption does not necessarily generalize for
other types of cylindrical flows, e.g. in helical flows, where the dominant motion is occuring along the tangential direction. In
such cases, modifications of the triplet map and diffusion evolution equations would be necessary. Different formulations for the
cylindrical triplet map are also possible, in contrast to the more standardised planar triplet map formulation. Lignell et al. [22]
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introduces several formulations for the triplet map, among which the so-called Triplet Map A (TMA) formulation, used here, is
the easiest to understand, given its direct analogy to the planar case.
The surface, or volume of the eddy Veddy for the cylindrical formulation, can be expressed as

Veddy = Δ�
[ˆ r0+l

0
rdr −

ˆ r0

0
rdr

]

. (A1)

This equation has been formulated considering that r0 ≥ 0 for simplicity, and it is equivalent to the volume integralΔ�
´ r0+l
r0

rdr.
As in the planar case, the threefold compression of the original profile results in the effective volume of an eddy segment,

here denoted as Vl∕3,

Vl∕3 =
Δ�
3

[ˆ r0+l

0
rdr −

ˆ r0

0
rdr

]

. (A2)

Each segment is defined within two internal boundaries. The position of each of the four boundaries can be expressed with the
notation rm with m ∈ {1, 2, 3} and r0 = rm−1 for m = 1. Each of the three compressed segments accounts then for an effective
volume,

Vl∕3 = Δ�
[ˆ rm

0
rdr −

ˆ rm−1

0
rdr

]

. (A3)

With this notation, the first boundary is r0 and the last boundary is r3 = r0 + l. Thus, equating Eq. (A2) with Eq. (A3) and
solving for the internal boundary rm results in,

rm =
{1
3
[

(r0 + l)2 − r20
]

+ rm−12
}

1
2
. (A4)

Algorithmically, this implies that the calculation of a boundary rm is done based on the data from the previous boundary rm−1.
We now generalize Eq. (A3) for the case when r0 is either positive or negative. For that, we make use of the sgn (signum) and

modulus functions,

Vl∕3 = Δ�
[ˆ

|rm|

0
rdr − sgn(rm) sgn(rm−1)

ˆ
|rm−1|

0
rdr

]

. (A5)

In Eq. (A5), the volume can be positive or negative. The latter occurs when rm and rm−1 have both negative sign. A similar
procedure can be used to generalize Eq. (A4),

|

|

rm|| =
{1
3
[

(r0 + l)2 − sgn(r0 + l) sgn(r0)r20
]

+ sgn(rm) sgn(rm−1)rm−12
}

1
2
. (A6)

Eq. (A6) is implicit due to the presence of the sgn(rm) term and the LHS modulus. Only one of the two possible solutions is real
and within the range [r0, r0 + l] in this case.
In order to determine the general expressions for the mapping function of a position f (r) into a new position r, we apply a

similar procedure to that used to obtain Eqs. (A2, A5) and (A6). The effective volume of an eddy segment extending from the
boundary r0 to an original position f (r) is conserved and compressed to 1∕3 of its magnitude,

Vf (r) =
Δ�
3

[ˆ
|f (r)|

0
rdr − sgn[f (r)] sgn(r0)

ˆ
|r0|

0
rdr

]

. (A7)

And conversely, for any mapped position r, that is referenced to the internal boundary rm−1, the effective volume is,

Vr = Δ�
[ˆ

|r|

0
r′dr′ − sgn(r) sgn(rm−1)

ˆ
|rm−1|

0
r′dr′

]

. (A8)

Eqs. (A7) and (A8) can be equated, given that any position f (r) will be mapped to a position r within any of the intervals
[rm−1, rm] for m ∈ {1, 2, 3}. This leads to the formal triplet map formulation in a cylindrical coordinate system, as illustrated in
Fig. A1 , where the middle segment changes the sign of the slope as in the planar definition,

f (r) =

⎧

⎪

⎨

⎪

⎩

sgn[f (r)]
{

sgn[f (r)] sgn(r0)r20 + 3
[

r2 − sgn(r) sgn(r0)r20
]}1∕2 r0 ≤ r ≤ r1,

sgn[f (r)]
{

sgn[f (r)] sgn(r0)r20 − 3
[

r2 − sgn(r) sgn(r1)r21
]}1∕2 r1 ≤ r ≤ r2,

sgn[f (r)]
{

sgn[f (r)] sgn(r0)r20 + 3
[

r2 − sgn(r) sgn(r2)r22
]}1∕2 r2 ≤ r ≤ r0 + l.

(A9)

We note the nonlinear post-triplet map profiles that occur in cylindrical coordinates, as seen in Figure A1 . This is a
consequence of the geometric stretching and it is discussed at length in the work of Lignell et al [22].
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FIGURE A1 Application of a cylindrical triplet map in the range [−0.3, 0.5] to a scalar velocity profile u(r). The figure shows
the original profile (thick line) and the mapped profile. The internal boundaries rm from each of the three segments of the triplet
map are also shown (dotted lines), as well as the axis line (r = 0) (dash-dot line). For comparison, the planar triplet map for the
same interval has been drawn with dashed lines.

APPENDIX B DISCRETIZATION AND NUMERICAL METHOD FORMOMENTUM
DIFFUSION EVOLUTION

B.1 T-ODT formulation
The discretization and numerical advancement of the diffusion evolution PDEs is discussed in this section. The FVM for the
integral momentum pipe flow equation, Eq. (11), is obtained by discretization of the r dimension, considering grid cells i with
cell interfaces at i + 1∕2 and i − 1∕2 (integrals are evaluated within these limits). Constant properties are assumed within cells
and the density is a constant. This leads to the discretized equation,

�
(du
dt

)

i

(

riΔri
)

= −
)p
)x

(

riΔri
)

+
[(

ri+1∕2�
ui+1 − ui
ri+1 − ri

)

−
(

ri−1∕2�
ui − ui−1
ri − ri−1

)]

. (B10)

We note that riΔri = [(ri+1∕2 + ri−1∕2)∕2](ri+1∕2 − ri−1∕2) = (r2i+1∕2 − r
2
i−1∕2)∕2, which is the same as the result of the integral´

rdr in the cell i, i.e. the radial area/volume of the cell i.
For the case ri = 0, Eq. (B10) contains an apparent singularity if the factor riΔri is rearranged to divide the RHS. The

singularity treatment for pipe flow numerical simulations is an old and known problem. In theDNSfield, the singularity treatment
reduces commonly to one of two approaches: either the discretization is done by effectively suppressing the singularity through
the transformation of the cylindrical equations to a polynom-based Spectral Element Method (SEM) (see, e.g. Khoury et al. [24]),
or by avoiding the singularity with a special FVM treatment [35]. In this work we have chosen the latter approach. Given that the
ODT line mesh is non-uniform, there are three possible choices regarding the cell that contains the position r = 0:

• The cell contains the position r = 0 at the face (either ri+1∕2 or ri−1∕2 are 0).

• The cell is symmetric and contains the position ri = 0 at its center.

• The cell is asymmetric and contains the position r = 0.

Examining Eq. (B10) discretized with an explicit method, it should be noted that the 1st option of our list of choices must be
discarded, since neglecting either ri+1∕2 or ri−1∕2 would effectively neglect the influence of one side of the domain on the other
side during the time advancement. This choice is somehow damped, but not entirely removed by choosing the 3rd option of the
list. Using the 2nd option in the list with an explicit method supposes another problem, given that the time-derivative is zero due
to the factor riΔri when ri = 0. The way then to circumvent this issue is to apply an implicit method along with a symmetric
center cell.
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If Eq. (B10) is discretized with a backward Euler method solved by means of a Tridiagonal Matrix Algorithm (TDMA), the
communication between cells allows the construction of a matrix in which the disappearance of the time derivative factor on
the LHS of the equation results in a shear stress flux equalization condition,

(

ri+1∕2�
ui+1 − ui
ri+1 − ri

)

=
(

ri−1∕2�
ui − ui−1
ri − ri−1

)

. (B11)

This expression implies, that within the center cell, there is no net gain or loss of momentum (the incoming fluxes necessarily
cancel out the outgoing fluxes). This is similar to the axis averaging methods used by DNS [35]. Also, by solving Eq. (B10) with
an implicit method, any discussion regarding the nature of the diffusion CFL condition in cylindrical coordinates is avoided.
The reader is advised at this point that this implicit solution procedure is not exactly the same one done in Lignell et al. [22],

where the momentum equation was solved explicitly due to a different treatment of the diffusion in the center cell. In Lignell et
al. [22], the center cell term riΔri = (r2i+1∕2+ r

2
i−1∕2)∕2, given that ri−1∕2 and ri+1∕2 have opposite signs due to the treatment of the

coordinate system with r ∈ ℝ. This is also the result of the integral
´
rdr evaluated from 0 to ri+1∕2 multiplied by 2, which is the

factor accounting for an integration over an arc 2�, normalized by �, instead of the standard integration over Δ� for any other
disc ring that does not contain the origin. Therefore, in Lignell et al. [22], the singularity is also avoided and an explicit method
along with a symmetric center cell is used.
Given that theODT code used is adaptive, the symmetric center cell implementation encounters a problem that is circumvented

by forcing the symmetric center cell with fixed size after every mesh adaption call. This causes strong sensitivity with the
mesh adaption, an aspect discussed in Section 4.2. The center cell is considered to have a size equal to dxmax (mesh adaption
parameter) in the calibration caseRe� = 590. Assuming that this center cell is also proportional to the Kolmogorov length scale,
we scale the size of the center cell with different friction Reynolds numbers as,

ΔrC,1
ΔrC,2

=
� �1
u�,1

� �2
u�,2

→ ΔrC,2 = ΔrC,1
Re�,1�2
Re�,2�1

. (B12)

In Eq. (B12), � is a proportionality constant to relate the center cell size ΔrC with �, where � is the Kolomogorov length scale
estimated as �∕u� . This consideration is done in order to scale the center cell size as the scaling of the Kolmogorov length scale,
although they do not have the same magnitude. u� is obtained from the friction Reynolds number definition, which involves �
as the pipe radius.
For the case of T-ODT channel flow, the advancement of the momentum diffusion evolution by Eq. (13) does not require any

special treatment. This is carried out in this work by means of a forward Euler explicit method, considering the diffusion CFL
condition. The spatial discretization is given by,

�
[du
dt

]

i
= −

)p
)x

+ 1
Δyi

[

(

� )u
)y

)

i+1∕2
−
(

� )u
)y

)

i−1∕2

]

, (B13)

B.2 S-ODT formulation
For the S-ODT pipe flow numerical advancement, some additional considerations in comparison to the temporal formulation
must be taken into account. The S-ODT pipe flow case is perhaps the most challenging one in this work, since not only the
same considerations of the temporal formulation must be followed (the equation must be solved implicitly), but also due to the
presence of the u2 term that needs to be advanced according to Eq. (17).
In this case, Eq. (17) is discretized implicitly as follows, considering the density as a constant,

�
u2,n+1i − u2,ni

Δx
(

riΔri
)

= −
)p
)x

(

riΔri
)

+
[(

ri+1∕2�
ui+1 − ui
ri+1 − ri

)

−
(

ri−1∕2�
ui − ui−1
ri − ri−1

)]n+1

. (B14)

In Eq. (B14), the superindexes n and n + 1 refer to the spatial positions xn and xn+1. The backward Euler implicit formulation
for the LHS spatial derivative was also used. This equation is solved using the Babylonian method [36], which is a simplification
of the general Newton’s method. In the Babylonian method, if a is an approximation to

√

N , then the average 1∕2(a+N∕a) is a
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better approximation to
√

N . Applying this definition to our discretized Eq. (B14), we compute iteratively the velocity un+1 as,

un+1i = 1
2

⎧

⎪

⎨

⎪

⎩

u⋆i +
u2,ni

(

riΔri
)

− Δx
�
)p
)x

(

riΔri
)

+ Δx
�

[(

ri+1∕2�
ui+1−ui
ri+1−ri

)

−
(

ri−1∕2�
ui−ui−1
ri−ri−1

)]n+1

u⋆i
(

riΔri
)

⎫

⎪

⎬

⎪

⎭

. (B15)

Here, a value of u⋆i is assumed (first guess is u⋆i = u
n
i ). A standard implicit TDMA is used to obtain values of un+1i with constant

value of u⋆i . After this is done, the value of u
⋆
i is updated to the value just found for un+1i . This procedure is repeated until the

residual between two consecutive obtained values of un+1i satisfies a given tolerance. We find convergence up to a tolerance
approximately equal to 1 × 10−10 m/s determined using a maximum norm in about 5 iterations (as a comparison value for the
error tolerance, we consider a reference value of u� of 1 m/s).
For the S-ODT channel flow, the advancement is done analogous to the cylindrical formulation, by the formula,

un+1i = 1
2

⎧

⎪

⎨

⎪

⎩

u⋆i +
u2,ni

(

Δyi
)

− Δx
�
)p
)x

(

Δyi
)

+ Δx
�

[(

� ui+1−ui
yi+1−yi

)

−
(

� ui−ui−1
yi−yi−1

)]n+1

u⋆i
(

Δyi
)

⎫

⎪

⎬

⎪

⎭

. (B16)

We note that it would also be possible to advance the planar spatial formulation explicitly as in the temporal formulation,
accounting for the advanced quantity u2 instead of u in Eq. (18). Except for the )∕)x derivative term, the discretization formula
for the advancement would be the same as in Eq. (B13). The application of a square root operator should follow after the time-
stepping to find the value of u, whereby the positive root should be considered at all times. This is due to the use of the FPG
forcing, which, altogether with the assumption of the preservation of the 1-D kinetic energy spectrum (� = 0 during an eddy
event) guarantees that the velocity field is positive everywhere and at all times.
None of the procedures described here for solving the spatial formulation are the same ones as that used by Lignell et al. [16,22],

which is a spatial formulation for open lines. In the before mentioned studies, a non-conservative version of the momentum
equation is used, by replacing du2∕dx by (u)du∕dx due to the substitution of the continuity equation [22]. As discussed in Section
2.2.2, continuity is a condition which is not solved for closed lines with constant density. Rather, the divergence condition is
used.

APPENDIX C CALIBRATION OF THE MODEL PARAMETERS C AND Z FOR THE T-ODT
SIMULATIONS

As in any turbulence model, some degree of empiricism is associated with ODT. In our study, this empiricism is related to
the determination of the values for the parameters C and Z of the model. On one hand, the C parameter is directly related to
the frequency of events being implemented, i.e. the turbulence intensity [28]. On the other hand, the Z parameter is seen as a
factor which might effectively deny the implementation of an eddy event. Z is primarily a cutoff mechanism for eddies that, if
implemented, might be instantaneously dissipated as heat, thus having essentially no impact in the flow dynamics. Initial values
for C and Z for the T-ODT channel and pipe flow simulations were selected based on the evaluations carried out by Lignell
et al. [16] and Krishnamoorthy [18] respectively. These values were then subject to a sensitivity study in order to determine the
optimal values used in this work (values in Tables 1 and 2 ).
Figure C2 exemplifies the impact of differentC andZ values on T-ODT pipe flow simulations, specifically on the normalized

wall normal mean velocity profile. In general, reducing the value of C decreases the number of eddies being implemented and
causes a profile behavior closer to the laminar one. Reducing the value of C implies a shift in the logarithmic region towards
higher velocity values. This is represented by a moderate increase in the slope of the mean velocity profile in the outer layer.
Traditional evaluations of the Z parameter in ODT identify it as an order unity model parameter [28]. For the case of wall-

bounded flows [15,16,18] and recent boundary layer investigations [37], this has been proven as an inadequate generalization. For
two-sided wall bounded flows such as the channel and pipe flow configurations evaluated here, the three-dimensional effects
of flow structures living in the buffer layer of the flow might be responsible of a significant departure from the ODT model
hypothesis. In these cases, Z is instead used in ODT as a tunable cutoff parameter intended to mimic the true behavior of the
flow dynamics. In general, increasing the value of Z shifts the logarithmic region of the mean velocity profile upwards, but
preserves the slope of the profile. Reducing the value of Z is seen to cause an earlier depature of the velocity profile towards
the logarithmic region [37].
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Given the tunable nature of theC andZ coefficients, there are different combinations of these parameters that might reproduce
different aspects of the flow dynamics. It is possible that a chosen pair of values for C and Z allows good reproducibility of the
mean velocity profiles, but not optimal results for the Reynolds stresses [37]. It is also possible that there is more than one pair of
values for C and Z that reproduces with reasonable accuracy the true flow dynamics in the mean velocity profile. In the case of
this study, we select the optimal values for C and Z based on their effect over the mean velocity profile for the different friction
Reynolds numbers given in Tables 1 and 2 . Following the ODT philosophy, the ultimate goal of this calibration process is to
achieve a Reynolds number independence of the calibration parameters.
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FIGURE C2 Influence of the ODT model parameters on the normalized wall-normal pipe flow mean velocity profile for
Re� = 550, 1000, 2003. DNS results from Khoury et al. [24] (Re� = 550, 1000) and Chin et al. [23] (Re� = 2003) are shown for
reference. The results for increasing Reynolds numbers have been shifted upwards in the plot for better visualization. a) Influence
of C and b) Influence of Z.

APPENDIX D CENTERLINE ANOMALY IN PIPE FLOW RMS VELOCITY PROFILES

During the numerical simulations for pipe flow performed in this work, evidence of anomalous activity around the centerline
for the RMS velocity profiles was found for the low Reynolds number case, even when implementing the before discussed
center cell treatment. There seems to be a delicate balance of model parameters in pipe flow simulations, which however, can
be properly scaled based on all considerations discussed in this paper. We note that this anomaly is also exaggerated due to the
use of the Triplet Map A formulation (TMA), in comparison to the TMB formulation used by Lignell et al. [22]. As explained in
Lignell et al. [22], in comparison to the TMB formulation, the TMA has a more pronounced spike of the normalized inverse eddy
turnover time �−1 in the proximity of r = 0. The fact that �−1 first drops at a normalized distance around 2r∕l and then surges
in the proximitiy to r = 0 in TMA, implies that eddies are favored to occur at r = 0, but discouraged in the proximity of r = 0
up to 2r∕l [22].
In the mean velocity profiles, this is seen as the relative jump of the profile towards the centerline, where mixing does not

take place due to eddies dominantly centered at r = 0. Based on this, the dependence on DATimeFac is also justified, given that
in order to match the mean velocity profile, we seek a mechanism to introduce more diffusion around the centerline, where the
mixing is disproportionate in comparison to the mixing happening right at the center in r = 0. This also justifies a dependence
onLmax for the cylindrical formulation, given that whenever eddies are approximately of sizeR, the center parcels can be mixed.
Influence to Lmax and DATimeFac was discussed in Section 4.2 from the point of view of the mean velocity profiles, however,
the reader can see in Figure D3 , the effect that these parameters have on the RMS velocity profiles. A proper combination of
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FIGURE D3 Centerline anomaly sensitivity to Lmax and DATimeFac parameters.

Lmax and DATimeFac is able to alleviate this centerline anomaly in ODT, which arises due to the characteristics of the cylindrical
formulation.
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