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ABSTRACT

Combustion is central to society and accounts for the majority of the world’s energy

production. Soot formation, transport, and emission from turbulent flames are an impor-

tant process in nonpremixed combustion. Soot is a major air pollutant with adverse health

effects; its emission reduces combustion efficiencies associated with unburned fuel; and

soot interacts strongly with the composition and temperature fields of flames, contributing

to the bulk of radiative heat transfer. Simulation of combustion is an important and

emerging discipline that compliments theoretical and experimental investigations and

can provide fundamental insight into turbulent combustion environments and aid in engi-

neering design of practical equipment. Simulations of practical combustion environments

cannot fully resolve all flow and chemical phenomena due to the wide range of timescales

and lengthscales present and must rely on models to capture the effects of unresolved

turbulent transport and turbulence-chemistry interactions.

Very little is know about soot formation in turbulent flames due to the difficulty of

experimental measurements and the computational cost of simulation. Direct numerical

simulation (DNS) resolves all relevant flow and chemical structures in turbulent flames,

requiring no turbulence closure models. DNS of soot formation with realistic combustion

chemistry and soot formation is presented in this dissertation. A series of increasingly

complex flow configurations is investigated including one-dimensional relaxing diffusion

flames, two-dimensional mixing layers and decaying turbulence simulations, and a three-

dimensional temporally evolving jet flame. A reduced ethylene mechanism consisting of

19 transported species is coupled to a four-step soot model using the method of moments.

The DNS are used to quantify soot formation and transport in turbulent flames. The

proximity of soot to a flame is important, as this impacts the soot reaction and radiation

rates. Differential diffusion between soot and the mixture fraction is very important.

Multidimensional flame dynamic effects including flame curvature are shown to influence

the direction of soot transport relative to a flame. The DNS provide a database by which

turbulent combustion models may be validated and developed. Soot formation in the

laminar flamelet and conditional moment closure models is examined.
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CHAPTER 1

INTRODUCTION

Combustion of fossil fuels and their derivatives is the single most important source of

energy in society. We light our homes, drive our cars, cook our food, and develop materials

and goods with the energy of the flame. In 2006, approximately 85% of the energy

consumed in the United States was from combustion sources [1]. Nearly all transportation

is by combustion engines, be it diesel, spark ignition, or gas turbines. Sixty-nine percent

of U.S. energy consumption for electricity generation derives from the burning of coal and

natural gas [1].

The importance of combustion has prompted intense research efforts to understand

and control the fundamental and applied aspects of flames and combustion devices. Fossil

fuels are limited commodities, and the design of efficient engines, burners, and boilers

saves fuel costs and reduces emissions of greenhouse gases (e.g., CO2) and air pollutants

such as unburned hydrocarbons, sulfur oxides, nitrogen oxides, carbon monoxide, and

particulate matter.

Combustion is a very complicated process involving a wide variety of simultaneous and

interacting physical phenomenon including turbulent fluid dynamics, thermodynamics,

convective and radiative heat transfer, multiphase flow, and complex chemical kinetics

involving tens to thousands of chemical species. These phenomena occur on lengthscales

and timescales that vary over many orders of magnitude: from nanoseconds for fast

chemical reaction of radical species, to tens of milliseconds for pollutant formation, to

seconds for large-scale flow structures. These processes are highly nonlinear, complicating

model development and application.

Combustion generally occurs as nonpremixed flames, as premixed flames, or as a

flameless mode [2]. Most flames are turbulent because of the high Reynolds numbers of

flows in combustion devices, but more practically, because turbulence enhances mixing

of fuel and oxidizer enabling large combustion heat release rates in a small volume. In

addition, most flames are nonpremixed, where fuel and oxidizer are introduced in separate
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streams. The streams mix via diffusive transport, and a thin reaction zone exists at

the location where fuel and oxidizer are in stoichiometric proportions. This stream

separation has the advantage of allowing greater control of the flame, while avoiding

safety concerns associated with flashback and unwanted spontaneous ignition as may

occur in premixed flames (where fuel and oxidizer are mixed to flammable proportions

prior to entering the combustion environment). Conversely, nonpremixed flames have

higher peak temperatures since the flame exists at a stoichiometric mixture, which tends

to maximize the formation of pollutants, such as NOx. In addition, as the fuel approaches

the flame front in the absence of oxygen, it pyrolyzes and forms soot and other products

of incomplete combustion.

Soot is a major component of most nonpremixed hydrocarbon flames and plays an

important role in practical aspects of a flame. Soot accounts for a flame’s luminosity,

and for a large fraction of the radiative heat transfer from a flame or fire to surrounding

objects. This heat transfer is desirable in steam boilers and other heating applications

but is also a mechanism for fire spread in wildfires or other fire hazards. Soot formation

is a product of the chemical industry with uses such as tire filler and printer toner

[3]. Soot emission from flames is also an air pollutant and health hazard. Many fine

particulates in the atmosphere of a size less than 2.5 µm, (termed PM 2.5) are formed

from hydrocarbon combustion. When breathed, these particles are able to penetrate

deeply into the lungs. Many scientific studies have been performed linking exposure

to fine particulates to health problems including aggravated asthma, chronic bronchitis,

decreased lung function including shortness of breath, and even premature death. In

addition, fine particulates, including soot, result in haze and reduced visibility in the

atmosphere. An extensive review of the health and environmental effects of particulate

matter is presented in the 2004 United States Environmental Protection Agency report

on “Air Quality Criteria for Particulate Matter” [4].

Soot is formed on the fuel-rich side of a nonpremixed flame where oxidizing species

concentrations are low. Soot exists as a nominally solid particulate phase with a particle

size distribution (PSD). The soot formation process is complex and is the subject of

ongoing research. Soot is nucleated as polyaromatic hydrocarbons (PAH) are formed

and grow mainly via addition of acetylene and other molecules. As a particulate phase,

soot has low molecular diffusivity, and the transport of soot occurs mainly via convection

and thermophoretic diffusion (driven by a temperature gradient). As soot is transported
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towards or away from a flame, the temperature and composition of the surrounding

gases change. These impact the growth rate of soot, and hence its concentration and

composition. The radiative emission rate of soot directly depends on its temperature and

concentration. If soot is transported from the fuel-rich growth regions across the flame to

fuel-lean regions, the high temperature and presence of oxidizing species burn the soot.

This process is observed in laminar candle flames in which soot is formed on the inside of

the hollow flame cone and transported upwards where it crosses through the flame and is

oxidized. In some cases, soot is incompletely oxidized, or the flame partially extinguishes,

and soot is observed to break through the flame in what are know as soot wings, leading

to soot emission into the cool, surrounding environment.

Typical soot volume fractions in atmospheric nonpremixed flames are on the order of

1 ppmv (part per million, by volume) [5, 6, 7], which corresponds to a mass fraction of

approximately 1%, (or 5% of the fuel mass). Concentrations in diesel engines and fires

can be significantly higher. The complex formation chemistry of soot results in formation

timescales that are relatively long compared to those responsible for most of the heat

release rate of flames. These formation timescales overlap the diffusive and convective

timescales in laminar and turbulent flames. This poses a significant challenge for the

modeling and simulation sooting flames because the soot cannot simply be decoupled from

the fluid flow, as is often done for fast combustion chemistry. Unlike passive pollutant

species, such as NOx, soot interacts strongly with the flame temperature field through

radiation, and with the composition field through reaction with intermediate combustion

products. Hence, soot fields must be simulated in conjunction with the reacting flow.

Several problems exist in our current understanding of turbulent sooting flames.

Large-scale fires are known to emit large quantities of smoke, which can shield surrounding

objects from the radiative heat transfer of a fire. The exact mechanism for this process

is not fully understood at the present time, and the ability to simulate such a process

accurately is not possible. More generally, very little at all is known about soot-flame

interactions in turbulent flows. Turbulent flows are unsteady (by definition) and involve

complex flame-flow interactions that wrinkle and contort flame surfaces. These dynamic

fluid motions result in a range of flame curvatures and strain rates that directly impact

soot formation rates and transport into and out of reaction zones. A detailed view of the

soot-flame-flow processes that occur in turbulent flames, along with the statistics of these

processes, is needed to enable the development and validation of models for turbulent



4

soot formation.

Most detailed analyses of sooting flames have been confined to relatively simple,

canonical flow configurations such as perfectly stirred reactors [8], one-dimensional freely

propagating premixed flames [9], and laminar diffusion flames [5, 10, 11, 12], which have

allowed detailed experimental investigation and comparison to computational models.

These configurations are ideal for model development and validation. However, the vast

majority of practical situations are turbulent. Experiments of turbulent sooting flames

have provided mainly averaged quantities of soot and temperature fields, but have been

unable to capture temporally and spatially-resolved scalar fields [13, 14, 15, 7].

Modeling and simulation of turbulent nonpremixed flames are becoming more and

more relevant to practical engineering design of combustion equipment and to the evalu-

ation and characterization of fire hazards. Simulation is complementary to experimental

investigation and can provide insights that are either not possible or not economical to

obtain experimentally. However, the fidelity of simulation depends upon the quality of the

underlying algorithms that define it. Hence, in order to apply simulation with confidence,

an understanding of the relevant physics is important.

Due to computational costs, simulations of practical turbulent configurations have

been confined to Reynolds averaged Navier-Stokes (RANS) and large eddy simulation

(LES) approaches. RANS and LES cannot resolve all of the timescales and lengthscales

present in a flow and must rely on subgrid models for closure of mean and filtered terms

representing unresolved turbulent transport that appear in the governing equations.

Turbulence-chemistry interactions are also important and require mixing and reaction

models for simulation of practical configurations.

Direct numerical simulation (DNS) is a computational approach in which all length-

scales and timescales are fully resolved. DNS requires no turbulence models and utilizes

highly accurate numerical methods to minimize computational error. As a result, com-

putational costs are very high for DNS, and application is presently limited to canonical

turbulent configurations at moderate Reynolds number (i.e., in combustion, small domain

sizes). However, DNS provides precise, detailed information of a chemically reacting flow

including complete spatial and temporal fields of temperature, pressure, composition, and

velocity, and may be used in lieu of experimental data. It is noted that DNS results are

direct in the sense that all of the turbulent scales arising from solution to the governing

transport equations are resolved. However, the accuracy of the simulation depends upon
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the accuracy of the chemical mechanism and molecular transport models for heat and

mass transfer employed.

This dissertation presents results of DNS applied to soot formation in turbulent

nonpremixed ethylene flames. DNS of turbulent, nonpremixed, sooting flames is an

original contribution to the field of combustion simulation. The primary objective of

this work is to increase fundamental understanding of soot formation and transport in

turbulent flames and to provide data for validation and development of combustion models

that can be used in practical configurations. The remainder of this chapter presents a

discussion of RANS and LES simulation approaches, a review of simulations with soot

formation, and a review of DNS simulation of reacting flows. Chapter 2 describes the

DNS formulation and the combustion chemistry and soot model applied. A series of

simulations has been performed of increasing complexity:

• One-dimensional simulations of unsteady, relaxing diffusion flames. This configu-

ration allows investigation of fundamental processes of soot-flame interaction in a

simple flowfield with few competing and complicating transport effects.

• Two-dimensional simulations of a Kelvin-Helmholtz instability representing the

rollup of a single vortex-eddy. This flow is a fundamental unit in more complex

turbulence and arises in many practical configurations at the interface between

shear layers. The configuration highlights the interaction between flame and fluid

structures as well as the importance of soot location in a flame.

• Two-dimensional simulations of decaying isotropic turbulence that lend insight into

soot-flame interaction in a simplified turbulent flow allowing realistic timescales and

transport processes.

• Three-dimensional simulation of soot formation in a temporally evolving jet flame,

providing statistical data describing flame and soot dynamics.

These simulation results are presented in Chapters 3-6, respectively, followed by a discus-

sion of modeling results obtained, notably the laminar flamelet, and conditional moment

closure models, presented in Chapter 7. Finally, conclusions and opportunities for future

research directions are given in Chapter 8.
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1.1 RANS and LES Simulation

RANS is widely used in commercial engineering applications as a tool to aid in the

design and development of a variety of equipment—everything from airplanes to power

plant boilers. The RANS equations are obtained from the Navier-Stokes equations by

writing instantaneous flow variables (such as velocity) as the sum of a local mean value

and a fluctuation, where for a statistically steady flow

φ(x, t) = φ̄(x) + φ′(x, t). (1.1)

Here, φ̄ is the time-average of a variable, φ, at a point x, and φ′(x, t) is its fluctuation

about the mean value, whose time-average is zero. The time-averaged variable φ̄ is defined

as

φ̄(x) = lim
τ→∞

1
τ

∫ τ

0
φ(x, t)dt, (1.2)

where τ is much larger than the largest timescale associated with the turbulent flow

field. The filtering operation of Eq. (1.2) removes small timescales so that they do not

need to be resolved by the simulation. The RANS equations appear very similar to the

Navier-Stokes equations. In RANS, the average values of flow variables are computed on a

coarse grid, and the effects of the unresolved turbulent motions are accounted for through

extra terms containing the so-called Reynolds stresses in the governing equations. These

terms must be modeled, and the RANS equations are closed by writing the Reynolds

stresses in terms of the mean flow components. RANS suffers from the fact that no

closure model for the Reynolds stresses can give accurate results for all flows because

universally applicable closure models do not exist. Hence model constants usually have

to be tuned to fit a particular flow [16].

In contrast to RANS, the LES equations are derived by applying a spatial filter

to the governing flow equations. The smallest turbulent eddies and their associated

timescales are filtered out, while the large, energy containing eddies are resolved. LES

has the advantage that closure models for terms arising from the unresolved scales are less

dependent upon the flow configuration due to scale similarity of smaller-scale turbulent

eddies [17]. The spatial filter applied is of the form [18]
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f̄(x) =
∫

D
f(x′)G(x− x′)dx′. (1.3)

Here, the integration is carried out over the whole domain, and G is a filter function with

a characteristic filter width ∆. Common functional forms for G are the tophat, Gaussian,

and sharp Fourier cutoff filter [18]. Application of the tophat filter is equivalent to simply

taking the average value of f over the filter width ∆. Figure 1.1 illustrates the filtering

approach. On the left of the figure, an unresolved turbulent field in each grid cell is

represented by its filtered (average) value at a given point. On the right, a tophat filter

is applied to a random signal. As the filter width increases, the signal becomes smoother,

and only larger structures are resolved.

Equation 1.3 is applied to the Navier-Stokes equations to obtain the LES equations,

which resemble the original equations but with an additional term that must be closed.

The incompressible, constant property (e.g., viscosity) LES equations for continuity and

momentum are, respectively,

∂v̄i

∂xi
= 0, (1.4)

∂v̄i

∂t
+
∂(v̄iv̄j)
∂xj

= −1
ρ

∂P̄

∂xi
+ ν

∂2v̄i

∂xj∂xj
−
∂τ sgs

ij

∂xj
. (1.5)

Here, τ sgs
ij = vivj − v̄iv̄j is a new unclosed term that represents momentum flux due to

unresolved turbulent inertia. The RANS equations have a similar term. Index notation

is used in these equations: subscripts i and j refer to orthogonal coordinate directions.
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Figure 1.1. Illustration of LES filtering.



8

A repeated subscript on any given term implies summation, and a single occurrence of a

subscript in a term implies a vector component [19].

1.2 Combustion Modeling

Incorporation of combustion chemistry into a flow simulation significantly increases

the complexity in two important ways. First, combustion chemistry requires consideration

of many chemical species, which must either be transported or otherwise accounted

for. Combustion reactions involve small timescales (e.g., among radical species) that do

not overlap with flow timescales, resulting in numerical stiffness. Solving an additional

transport equation for each chemical species would severely limit a simulation. Reducing

this chemical load by reducing the number of transport equations to be solved is termed

reaction modeling. Second, unresolved turbulence-chemistry interactions arising from

fluctuations of scalar fields are significant and must be modeled. The Favre (density

weighted) averaged [20] transport equation for a reactive scalar φ is

∂(ρ̄φ̃)
∂t

+
∂(ρ̄ṽiφ̃)
∂xi

= −
∂j̄φ
∂xi

−
∂(ρ̄φ̃′′v′′i )
∂xi

+ ω̄φ. (1.6)

The fourth term in this equation represents transport of scalar φ by unresolved turbulence

and is often closed using a gradient transport assumption using a turbulent diffusivity

[20]. Modeling of the last term in Eq. (1.6) is much more challenging because the reaction

rate term is highly nonlinear. As a result, the average rate cannot simply be computed

using the average quantities it depends upon. For a second-order irreversible reaction,

A+B → C, (1.7)

the average rate expression for species A is given by

ω̄A = cAcBko exp (−E/RT ) 6= c̄Ac̄Bko exp (−E/RT̄ ). (1.8)

Here, the inequality holds except in the limit of reaction timescales being much greater

than turbulent timescales (low Damköhler number) [21], which is rare in combustion.
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Instead, for a given chemical state vector φ (consisting of, e.g., T, P, and composition),

the average reaction rate for a species i, which is a function of φ, must be computed as

ω̄i =
∫

φ
ωi(φ)P (φ)dφ, (1.9)

where P (φ) is the joint probability density function (PDF) of φ, representing the subgrid

fluctuations in the chemical state. The method of solving Eq. (1.9) or its equivalent (i.e.,

the equation holds for other scalars, not just the reaction rate) is termed a mixing model.

Two goals of combustion modeling are:

1. To reduce the complexity of the problem by reducing the number of transport

equations necessary to accurately describe the chemistry.

2. To find ways to simplify modeling of the subgrid mixing effects.

The first goal is attempted by directly reducing chemical mechanisms or by applying

subgrid reaction models that represent the chemistry in terms of a few parameters that

are solved on the computational grid. This latter approach involves taking advantage

of scale separation between grid-resolved phenomena and (faster) subgrid phenomena.

A significant scale separation allows decoupling of fast combustion reactions from slower

convective processes. Transport and subgrid mixing closure is then applied to the reduced

parameterization. The application of a mixing model when the joint PDF is considered is

much simpler when the number of parameters (dimensions of the joint PDF) is small. The

first and second goals, listed above, are often intertwined with little explicit distinction.

1.2.1 Direct PDF Methods

In direct PDF methods, a transport equation is solved for the joint PDF itself, and

reaction rates appear in closed form (no modeling is required). Direct PDF methods

are usually performed using Lagrangian particles in a Monte-Carlo simulation due to

the high dimensionality of the PDF [22]. Direct PDF methods are computationally

intensive, however, and require modeling of transport terms appearing in the governing

PDF transport equation.

1.2.2 Equilibrium Models

In the limit of very high Damköhler number (fast reaction), the reaction timescales

are much smaller than mixing timescales, and hence, the chemistry can be decoupled
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from the fluid dynamics. In this situation, all reactive scalars are related to the mixture

fraction, ξ, which is a conserved scalar commonly defined as the local mass fraction of

gas originating in the fuel stream. The mixture fraction quantifies the degree of mixing

between the fuel and air streams, and linear relationships exist between conserved scalars

and the mixture fraction. For a conserved scalar ϕ such as an elemental mass fraction,

or enthalpy in an adiabatic system, ϕ = (ξ)ϕξ=1 + (1 − ξ)ϕξ=0. Strictly, this assumes

all species and heat have equal diffusivities (Lei = 1), with single-species driving forces,

and (for enthalpy) that other Shvab-Zeldovich assumptions hold [2]. For a given value

of mixture fraction, enthalpy and elemental composition is known, and the equilibrium

state of a system can be computed and tabulated as φi(ξ) (where φi is a chemical state

variable, such as temperature). A transport equation for the time-averaged or filtered

mixture fraction is then solved on a computational grid, and scalars φ̄i can be computed

as

φ̄i =
∫
φi(ξ)P (ξ)dξ. (1.10)

Here the PDF of mixture fraction is needed, which is often computed using an assumed-

shape PDF (usually a clipped Gaussian or β-PDF), requiring the mean and variance of

mixture fraction. The latter can be modeled in several ways [23] and φ̄i can be tabulated

as a function of mixture fraction and its variance. Here, complex combustion requiring

transport and mixing closure of all species has been reduced to transport of only mixture

fraction and its variance. Of course, the tabulation does not need to be an equilibrium

tabulation, any φi(ξ) (such as from experimental data) could be used.

1.2.3 Flamelet Models

Flamelet models incorporate some of the effects of finite-rate chemistry not captured

in equilibrium models by adding a parameter that can capture additional timescales.

Unresolved combustion is assumed to take place between fuel and oxidizer in a collection

of laminar flamelets whose chemical rates are assumed fast enough that the flame thickness

is smaller than Kolmogorov scales, and turbulence only wrinkles the flames. The flamelets

are described by the one-dimensional convective/diffusive equations that are transformed

from physical to mixture fraction space using a coordinate transformation [24, 25]. Figure

1.2 is a schematic of the physical configuration. The flamelet equations rely on the
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Figure 1.2. Flamelet model schematic.

assumption of unity Lewis numbers (equal species and thermal diffusivities) and Fickian

diffusion, as well as the one-dimensional flame structure, and are given by

ρ
∂Yi

∂τ
=
ρχ

2
∂2Yi

∂ξ2
+ ṁ′′′

i , (1.11)

where

χ = 2Dξ

(
∂ξ

∂y

)2

(1.12)

is the scalar dissipation rate, which relates the physical and mixture fraction coordinates.

The scalar dissipation rate characterizes the intensity of turbulent flame straining and

is usually specified as a known function of the mixture fraction: χ = χog(ξ), where

χo is a constant. Adiabatic enthalpy is also a known function of mixture fraction, and

temperature can be computed from the enthalpy and composition. The flamelet equations

can be solved to steady state and tabulated by the natural parameters ξ and χo. A

grid-averaged quantity φ̄i can then be computed as

φ̄i =
∫

ξ

∫
χo

φi(ξ, χo)P (ξ, χo)dχodξ. (1.13)

Here, the joint PDF of ξ and χo is needed. Usually it is assumed that ξ and χo are

statistically independent so the joint PDF is split into a product of marginal PDFs

P (ξ, χo) = P (ξ)P (χo). Linearity between φi and χo is also assumed so that the integration
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above is just over P (ξ), and φi is evaluated as φi(ξ, χ̄o) in Eq. (1.13) [26]. Alternatively,

a lognormal distribution for P (χ) is used [27, 28].

1.2.4 Unsteady Flamelet Models

Steady flamelet models incorporate some finite-rate chemistry through the subgrid

reaction-diffusion balance, but unsteady effects such as flame extinction and ignition are

not captured. Also, grid-resolved time-history effects involving chemical species whose

reactive timescales overlap with grid scales (such as NOx or soot formation) will not

be accurately captured using steady flamelets. The flamelet equations can be solved

in unsteady form using time as an additional parameter. Often, χo is given some

temporal profile and the unsteady flamelet equations are solved from some specified initial

condition. The timescale of the subgrid flamelet simulation may then overlap with the

computational fluid dynamics (CFD) grid-resolved timescales, and the subgrid flamelet

can be thought of as moving through the computational grid in a Lagrangian sense.

Some method of linking the flamelet time to the corresponding time on the CFD grid is

required. Pitsch et al. [29, 30] have used a decaying profile for χ as would be found in a

turbulent jet. The flamelet time is then linked to the axial position in the jet based on

the axial jet velocity and position.

1.2.5 CMC Models

The conditional moment closure (CMC) model is based on the observation that

most fluctuations of scalars in turbulent nonpremixed combustion are associated with

the mixture fraction (local stoichiometry). A review of CMC is presented by Klimenko

and Bilger in [31]. Rather than taking traditional averages of scalars in the RANS or

LES equations, averages are conditioned on the mixture fraction. In first-order CMC,

fluctuations of conditional scalars are ignored. The resulting transport equation for a

scalar (say some reactive species) φi is

ρη
∂Qi

∂t
= −ρηvη · ∇Qi + ρη

χη

2
∂2Qi

∂η2
+ 〈ωi|η〉+ ey + eQ, (1.14)

with

eQ =
〈
∇ · (ρD∇Qi) + ρD∇ξ · ∇

(
∂Qi

∂η

)∣∣∣∣ η〉 , (1.15)
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eY = −
〈
ρ
∂Y ′′

∂t
+ ρv · ∇Y ′′ −∇ · (Dρ∇Y ′′)

∣∣∣∣ η〉 . (1.16)

Here subscript η denotes a variable conditionally-averaged on mixture fraction ξ having

value η (η is the sample space variable for the random variable ξ). For example, Qi =

〈φi|η〉 is the conditional average of φi. The last two terms in Eq. (1.14) require closure

models as do the conditional velocity (vη) and conditional scalar dissipation rate (χη).

The CMC model increases the dimensionality of the problem by one, with the mixture

fraction appearing as an independent coordinate. The reaction rate, however, appears in

closed form with 〈ωi(φ)|η〉 = ωi(〈φ|η〉). Mean grid values of unconditional scalars are

recovered from

φ̄i =
∫
QiP (ξ)dξ. (1.17)

A transport equation is solved for the mean mixture fraction with P (ξ) obtained from the

mean and variance of mixture fraction when using an assumed-shape PDF for P (ξ). The

CMC equations are expensive because of the increased dimensionality of the problem if

detailed chemistry is used, but the reaction source closure problem is avoided. Often, the

dimensionality is reduced by integrating across some of the spatial dimensions. In jets,

for example, one can preserve the axial direction and cross-stream average through the

radial direction [32]. It is also possible to solve the CMC equations on a coarser grid than

the flow equations. For homogeneous flows, the spatial dependence of Eq. (1.14) drops

out, and the CMC equations resemble the flamelet equations. Because of the spatial and

temporal dependence in Eq. (1.14), chemical history effects can be captured and longer

chemical timescales explicitly resolved.

1.2.6 Progress Variable Approaches

Desam [33] developed a novel approach to unsteady flamelets called the reaction time

flamelet model. The model was developed for NOx formation in which the subgrid flamelet

time was monotonically correlated to NO concentration, which was then used as the

“time” parameter and transported on the CFD grid. A similar progress variable approach

was used by Pierce and Moin [34] in which a steady flamelet-like library was parameterized

by mixture fraction and a progress variable, with both being transported on the CFD grid.

In [34], the progress variable approach was able to capture a wider range of the accessed
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state space than a typical flamelet model and included some ignition and extinction

effects.

Subgrid models based on one-dimensional flows have been discussed above, but other

configurations for subgrid turbulence-chemistry interactions are possible. Canonical reac-

tors are appealing because they are easy to model and parameterize. CSTR (continuous

stirred tank reactor) models and premixed flame models have been applied to tabulate

the chemical state as a function of mixture fraction and some progress variable, such as

combustion product concentrations: H2O+CO2 or CO2+CO [35].

The ILDM (intrinsic low-dimensional manifold) model, developed by Maas and Pope

[36], is a rigorous and elegant method of reducing a chemical mechanism in which fast

chemical processes are assumed to exist in local equilibrium with the evolution of longer

timescale processes. The evolution of the slower processes occurs in a reduced space within

the full thermochemical state space that can be represented by an arbitrary number of

parameters depending on desired accuracy. These parameters are then transported on

the CFD level, with other species. In the canonical reactor sense, the ILDM model

corresponds to a batch reactor and, hence, does not account for transport effects at the

subgrid level.

Most of the above models assumed detailed chemical mechanisms were used in describ-

ing the combustion reactions. However, reduced mechanisms using partial equilibrium

and pseudo-steady state assumptions [2] which involve fewer chemical species could be

used. Indeed, ILDM or other parameterizations may be coupled to existing combustion

models such as the CMC equations, where, rather than solve the CMC equations for

species, they could be solved for a few ILDM parameters.

1.2.7 Other Combustion Models

Other models for turbulent combustion have been developed such as the stochastic

linear eddy and one-dimensional turbulence models (LEM, ODT) in which mixing is sim-

ulated on a one-dimensional domain that may be embedded in the flow. These models are

characterized by the solution of one-dimensional reactive diffusive equations and periodic

statistical rearrangement events (e.g., triplet maps) simulating the effect of turbulent

eddies [37, 38]. Other, simpler models employing “mixed is burned” assumptions are

common such as the eddy breakup model.
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1.3 Review of Turbulent Simulations
with Soot Formation

Modeling soot formation in turbulent nonpremixed flames has been a challenge due to

the complex chemical mechanisms and long timescales governing soot formation. Unlike

other pollutants, such as NOx, which can be effectively postprocessed on established flow

fields, soot can strongly interact with temperature and composition fields. The need

to bridge the resolved and subgrid scales and account for radiative effects has led to a

progression in applied models. Most computations of turbulent sooting flames are RANS

simulations of jet flames. The fuels are typically methane, acetylene, ethylene, or propane.

Generally, the soot is modeled by the addition of two transport equations for the first two

moments of the soot size distribution. These moments represent particle number density

and soot mass per unit volume, ρYs, or soot volume fraction fv = ρYs/ρs, where ρs is the

soot particle density (assumed constant).

The soot sources for these moments ωn, ωs are closed in several ways. Usually, no

mixing model of the form of Eq. (1.9) is applied, rather ω̄(φ) is treated as ω(φ̄). Often,

the gas phase chemistry is totally decoupled from the soot chemistry and gas species are

computed using one of the combustion models discussed above. Gas chemistry ranges

from single-step to detailed schemes including PAH growth, though the treatment is

usually subgrid using, e.g., the flamelet model. A full range of soot models are applied.

Heat loss is also often decoupled, with treatments ranging from specification of T (ξ)

profiles from experimental data or laminar flame calculations, to specification of a fixed

fractional loss of sensible enthalpy, termed heat loss. Radiation models, when applied, are

usually the optically thin model, or the discrete ordinates model. Often, the gas phase

subgrid chemistry model is taken to be adiabatic. Sometimes heat losses are accounted

for through a heat loss parameter or the optically thin model. Heat loss effects are never

accounted for in the joint PDF, rather P (ξ, γ) ≈ P (ξ)P (γ) ≈ P (ξ)δ(γ − γ̄) is assumed,

where γ represents the heat loss parameter.

Early simulations of sooting flames did not treat soot explicitly. Jeng et al. [39]

modeled methane and propane flames using equilibrium gas chemistry in 1982. A fixed

fraction of the sensible enthalpy in the flame was removed to account for radiative

losses (see also [40]). Gore et al. [40] did a calculation in which chemical species and

soot were specified as experimental state relationships with mixture fraction in 1992.

Radiative losses were computed on the grid with temperature inferred from enthalpy
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and composition. In 1995, Young and Moss [41] simulated an ethylene flame where soot

number density and mass fraction were transported in the CFD simulation with soot

rates computed from a four-step mechanism. Soot was both postprocessed onto the flow

field using an experimental temperature-mixture fraction relation, and by computing the

soot as part of the flow calculation with heat loss obtained from an optically thin model

coupled to the experimental temperature-mixture fraction profile perturbed by a heat

loss parameter. Four-step soot models consist of nucleation, surface growth, oxidation,

and coagulation processes.

Bressloff et al. [42] modeled a methane jet using a one-step gas reaction modeled using

an eddy breakup combustion model (1996). The soot number density and mass fraction

were transported with a three-step soot mechanism (no soot oxidation was employed).

Gaseous intermediates for soot were computed from an adiabatic flamelet model. Brookes

and Moss [15], in 1999, did similar calculations using laminar flamelets for gas chemistry.

Soot oxidation by OH was included and subgrid heat losses were coupled to grid-level

radiation through a heat loss parameter. Yan and Holmstedt [43] simulated a propane jet

flame using experimental correlations between gas compositions and mixture fraction

(1999). The two soot moments were transported with a four-step chemistry model.

Likewise, Morvan et al. [44] simulated a line fire interacting with a crosswind using

one-step gas reaction with a laminar flamelet model (2001), and Guenberger et al. [45]

simulated a rich natural gas furnace using equilibrium gas chemistry (2002).

Several researchers have simulated ethylene jets with the gas state obtained from the

laminar flamelet model with a heat loss parameter coupled to the grid-resolved radiative

heat losses (using the optically thin model). Only the soot volume (or mass) fraction

was transported on the grid and its reaction rate closed using the product of the grid

soot volume fraction and the subgrid soot rate normalized by volume fraction (where

the normalized soot rated was assumed independent of the amount of soot). Hence, a

partial splitting of the soot rate between subgrid and resolved scales was done. Detailed

gas chemistry and the HACA (hydrogen abstraction, acetylene addition) soot mechanism

was used in [28, 46]. Balthasar [47] took a similar approach in 1996, but postprocessed

the soot on an established flow field. The flamelet model applied included optically

thin radiative losses, but the CFD simulation did not account for the higher heat losses

associated with increased soot at the grid level.

Wang et al. [48] modeled an oxygen-enriched propane jet flame using a detailed gas
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mechanism with PAH formation (2005). Turbulence-chemistry interactions were treated

using an eddy-breakup model and soot was modeled by transporting the first six moments

of the particle size distribution with the HACA mechanism used for surface reactions.

Desjardin and Frenkel [49] simulated an acetylene-air jet flame using LES (1999).

The soot mass fraction and number density were transported with a four-step reaction

mechanism. One-step combustion was used as well as the discrete ordinates radiation

model with no coupling to the subgrid gas chemistry.

Kronenburg et al. [32] modeled soot formation in a methane jet using CMC in 2000.

Only the axial spatial dimension was retained in the CMC equations. Soot mass fraction

and number density were transported with five-step soot rates (O2 and OH oxidation).

Reduced and detailed methane chemical mechanisms and the optically thin radiation

model were applied.

Pitsch et al. [30] modeled an ethylene flame where both the soot and gas chemistry

were treated subgrid using an unsteady flamelet model, which allowed for the longer

timescale of the soot formation process (2000). Optically thin radiation was used in the

subgrid model. Detailed gas chemistry for aromatic growth up to pyrene was used and

soot was treated using the first two moments and the HACA mechanism.

None of these simulations included turbulence-chemistry interactions in closing the

soot rates, and a large variation in the level of detail attempted in the models is ob-

served. Lindstedt and Louloudi [50], however, simulated turbulent ethylene flames with

a transported PDF method in which turbulence-chemistry interactions were accounted

for (2005).

At present, only one DNS with soot formation has been performed, while the present

work was in progress. In 2007, Yoo et al. [51] simulated soot formation in a two-

dimensional, turbulent, counterflow, ethylene-air flame, with one-step combustion chem-

istry, and a four-step, two-moment soot model. The discrete ordinates radiation model

was used in the simulation.

1.4 Direct Numerical Simulation

Direct numerical simulation (DNS) resolves all of the scales of turbulent motion,

from the integral scales characterized by the flow configuration to the Kolmogorov scales

where turbulent energy is dissipated by viscous effects. The size of the difference between

these scales dictates the size of a computational grid for numerical simulation. The ratio

of the largest to the smallest eddies in isotropic, homogeneous, turbulent flow, ( L/η),
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scales as Re3/4
L , where ReL is the Reynolds number based on the integral scale of the

flow [17]. Thus, as ReL increases, the disparity in lengthscales between the largest and

smallest eddies increases. If all of the scales of motion are to be resolved, the number of

grid points required in each direction increases in proportion to Re3/4
L as ReL increases

[17, 52]. In three-dimensional flow, the number of grid points is proportional to Re
9/4
L .

In addition, the flow timescales are proportional to the lengthscales and the combined

effect of spatial and temporal resolution requirements gives computational costs that

scale approximately as Re3L for three-dimensional flow. For this reason DNS is limited

to moderate Reynolds number flow and simulation of practical combustion environments

are not feasible currently.

The incorporation of detailed chemical kinetics into a DNS simulation substantially

increases the complexity. In addition to solving the standard Navier-Stokes equations

consisting of continuity and momentum, transport equations for one less than all chemical

species, and an energy equation are required. Also, thermochemical properties vary as

a function of composition and temperature and are not constant in reacting flows. For

combustion simulations, in addition to resolution of the lengthscales and timescales of

the turbulent flow, all continuum chemical scales must be resolved. As noted above,

combustion chemistry can involve many species and reactions. In a DNS, gradients in

all chemical species must be resolved, requiring ten or more grid points across a flame

front [53, 54] resulting in very small grid spacings (O(10µm)). For this reason, DNS

simulations of combustion chemistry are limited to small computational domains on the

order of centimeters.

DNS is also characterized by a high degree of numerical fidelity. For turbulent flow

simulations, it is important that truncation errors in the numerical scheme are minimized

so that numerical diffusion of turbulent energy does not compete with the physical process

of viscous dissipation [52]. For this reason, high-order finite difference approximations

(6th-8th) of derivatives appearing in the governing flow equations are used for spatial

coordinates. In spectral methods, time advancement of the solution takes place in

wave number space rather than physical space. The efficient fast Fourier transform

(FFT) is used to convert between physical and wave number space. Approximation

of derivatives in spectral methods is exact and accuracy is dictated by the number of

discrete Fourier modes retained. However, spectral methods require periodicity in the

domain in the direction of application of the method. For flow configurations with more
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complex boundary conditions, high-order finite difference methods are used [55, 56].

Time advancement is accomplished using methods for ordinary differential equations

(e.g., Runge-Kutta, Adams-Bashforth). Explicit methods are usually used since implicit

methods have a high computational cost per timestep, and many timesteps are required

to resolve the evolution of the flow [55].

Although DNS cannot simulate flows of engineering interest, it is an ideal tool for

obtaining mechanistic insight into turbulent reacting flows and in the evaluation and

development of closure models for LES and RANS. DNS provides a level of detail of

flow/flame interactions unrivaled by any other means (albeit at a small scale). Data from

DNS simulations are often used in two ways [55]. First, in so-called a-posteriori tests,

the DNS results are used as “experimental” data, for which RANS and LES simulations

can be compared. Using DNS data rather than experimental results has the advantages

that (1) experimental results may not be available or feasible, (2) the boundary and

initial conditions are known exactly, and (3) more detailed information may be obtainable

from DNS than is available experimentally. The drawbacks were noted above, that is,

computational cost and simple configurations. Second, in a-priori testing, DNS data

are used directly to evaluate model performance. For example, the DNS data can be

filtered to obtain the subgrid turbulent stress τ sgs
ij = vivj − v̄iv̄j . The filtered data

could then be used as input to a given model for τ sgs
ij and the results compared. In

combustion, the equilibrium reaction model, for example, could be tested by comparing

the chemical state obtained by the DNS to the equilibrium state using the DNS values of

the mixture fraction and enthalpy [57]. In this way, performance of a given simplification

of the chemistry can be isolated from turbulent mixing effects. DNS data are also used

directly to quantify important turbulence-chemistry interactions such as the effects of

flame strain and curvature, effects of multicomponent mass transfer, and transient finite-

rate chemistry effects such as flame extinction and ignition [58, 59].

1.4.1 Review of DNS of Turbulent Combustion

Several reviews summarizing DNS of nonpremixed combustion have appeared [59,

53, 58, 60]. Progress in DNS of combustion over the last 20 years or so has consisted

of increasing the amount of physical phenomena accounted for in the simulation. As

noted above, incorporation of chemical reaction in a flow simulation greatly increases

computational costs, and tradeoffs in the level of physical detail in different parts of
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the simulation have been made as a compromise between computational costs, physical

models, and achieving the goals of the end use of the simulation. Turbulence is assumed

to be two- or three-dimensional. Combustion chemistry models range from single-step

irreversible reaction, to global multistep schemes, to reduced or skeletal mechanisms,

to detailed kinetics. Flow configurations range from simple mixing layers, to periodic

isotropic decaying turbulence, to temporally or spatially evolving jets. Transport models

range from specification of Schmidt numbers, to mixture-averaged species transport with

a single species driving force (e.g., Fickian), to full multicomponent mass transfer (e.g.,

the Maxwell-Stefan equations) [61, 59].

In 1985, McMurtry et al. [37] simulated a two-dimensional, temporally evolving,

reacting mixing layer using single-step, irreversible chemistry with heat release. A com-

putational domain of 64 × 64 grid cells was used. The Schmidt, Prandtl, Reynolds, and

Damköhler numbers were fixed in these simulations. Similar studies were conducted by

Givi et al. [62] in 1991 using a grid of 1282 or 2562 points and a temperature dependent

reaction rate. In 1994, Miller et al. [63] performed simulations in three dimensions.

Many studies have been done of the interaction of nonpremixed flames with decaying

isotropic turbulence in a box. Three-dimensional, constant property, isothermal reaction

with periodic boundary conditions were done in the early 1990’s [64, 65, 66]. Lee and

Pope [67] in 1994, and later Jaberi et al. [68] in 1997 studied three-dimensional isotropic

turbulence with external forcing to obtain statistically stationary results using the above

assumptions. Mahalingam et al. [54] allowed for heat release and Arrhenius reaction rates

for one- and two-step global reaction schemes. The boundaries in the plane of the flame

were nonreflecting to allow an open domain, avoiding pressure buildup. Bushe and Bilger

[69] performed similar calculations using forced isotropic turbulence and a three-step

global mechanism: two steps for methane oxidation and one for NO production.

In 1997, Montgomery et al. [70] simulated three-dimensional isotropic decaying tur-

bulence with periodic boundaries using a low-Mach formulation and a reduced hydrogen

mechanism consisting of four transported species. Reaction zones were widened by

running at low pressure, preheating the reactants, and using reduced Schmidt numbers to

reduce resolution costs. Two-dimensional simulations with detailed hydrogen chemistry,

mixture-averaged transport (Fickian) with thermal diffusion, and nonreflecting boundary

conditions have also been performed [71, 72]. Baum et al. [73] performed two-dimensional

premixed DNS in isotropic turbulence with periodic boundaries in one direction and non-
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reflecting boundaries in the other. Detailed H2 chemistry and mixture-averaged transport

properties with Fickian diffusion were applied. Van Kalmthout and Veynante [74] studied

a two-dimensional mixing layer using a one-step reaction with heat release. Nonreflecting

boundaries were used in the cross stream direction and homogeneous isotropic turbulence

was injected into the domain to attain a spatially-developing flow.

A four-step global mechanism for NOx (one-step methane oxidation, three-step NOx

formation) was applied in two- and three-dimensional decaying isotropic turbulence with

periodic and nonreflecting boundaries. The chemical mechanism was constructed to

minimize computational cost while attempting to preserve flame temperature, burning

velocity, and species profiles, and to account for unsteady effects [75]. DNS of three-

dimensional isotropic decaying turbulence with a four-step n-heptane mechanism [76]

were also performed. Thevenin et al. [77] present results of a premixed calculation using

a DNS code with a low Mach assumption and a pressure projection to remove the acoustic

CFL restriction. An intrinsic low-dimensional manifold method (ILDM) [36] coupled to

a flame prolongation method was used to reduce the chemistry.

In 2002, a three-dimensional lifted hydrogen jet diffusion flame was simulated using

22.8 million points, detailed chemistry and Fickian mass transfer with mixture-averaged

coefficients, and nonreflecting boundary conditions [78]. The numerics were much coarser

than usual for DNS: a finite volume scheme with TVD upwinding was used with a second-

order Runge-Kutta integrator [78]. In 2004, Sutherland [57] simulated two-dimensional

spatially evolving jets using detailed syngas (12 species) and reduced methane (17 species)

reaction mechanisms, along with Fickian diffusion with mixture-averaged coefficients.

Turbulence was injected at the inlet and nonreflecting boundary conditions were applied.

In 2003, Pantano et al. [79] performed three-dimensional DNS of a turbulent, temporally

evolving mixing layer to study the effects of heat release on turbulence and mixing.

Simplified chemistry and transport properties were used. The grid size consisted of 38

million cells.

More recently, in 2007 large-scale DNS of combustion with detailed chemistry in

three dimensions has been reported. Sankaran et al. [80] performed three-dimensional

simulations of a statistically stationary lean premixed methane Bunsen flame in the thin

reaction zones regime with a 13-species reduced mechanism on a computational mesh of

51.84 million cells. Hawkes et al. [81] performed a parametric study of extinction and

reignition of temporally evolving CO/H2 jet flames with Reynolds numbers up to 9,000
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and up to 500 million grid cells. Yoo et al. [82] performed a DNS of a lifted hydrogen jet

flame with a heated coflow, consisting of nearly one billion grid cells.



CHAPTER 2

DNS FORMULATION, MODELS, AND

NUMERICS

The DNS code is called S3D and was developed at Sandia National Laboratories.

The code is written in Fortran 90 and parallelized with MPI. S3D solves the fully

compressible, three-dimensional reacting Navier-Stokes equations on a uniform Cartesian

grid. Equations for continuity, momentum, total energy, and chemical species mass

fractions are solved in their conservative form. The ideal gas law equation of state is used

throughout to compute the pressure from the density, temperature, and composition.

A fourth-order, six-stage explicit Runge-Kutta method is used for time advancement

[83]. Spatial derivatives are evaluated using eighth-order central difference approxima-

tions derived from Taylor series. A tenth-order spatial filter is applied to remove high

wavenumber content and reduce aliasing errors at each timestep [84]. The boundary

conditions of Sutherland and Kennedy are used in S3D [85]. All thermodynamic and

transport properties are composition and temperature dependent and are evaluated using

Chemkin III [86]. In all simulations presented, mixture-averaged effective diffusivities are

used, with each species driven by its own mole fraction gradient (Fick-style). The code can

also compute species diffusivities assuming constant Lewis numbers. The mass fraction

of the last chemical species, N2 is computed to ensure conservation of mass, and thus the

diffusion flux of N2 implicitly enforces a null sum of species diffusion fluxes as required

by continuity.

The governing equations solved are given (in index notation) by

continuity:
∂ρ

∂t
= −∂(ρvi)

∂xi
, (2.1)

momentum:
∂(ρvi)
∂t

= −∂(ρvjvi)
∂xi

− ∂P

∂xi
+
∂τi,j
∂xi

, (2.2)

energy:
∂(ρeo)
∂t

= −∂(ρeovi)
∂xi

− ∂(Pvi)
∂xi

+
∂(τi,j · vj)

∂xi
− ∂qi
∂xi

, (2.3)
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species:
∂(ρYk)
∂t

= −∂(ρYkvi)
∂xi

−
∂(jk,i)
∂xi

+ ωk. (2.4)

In these equations ρ is density, vi is velocity, t is time, xi is position, P is pressure, τi,j

is the viscous stress tensor, Yk is the mass fraction of species k, and ωk is the species

reaction rate. In addition, eo, qi, and jk,i are the specific total energy, heat flux vector,

and species diffusion flux vector, respectively. The first two of these quantities are defined

as

eo =
vivi

2
+ h− P

ρ
, (2.5)

qi = −λ ∂T
∂xi

+
∑

k

hkjk,i +Qrad,i, (2.6)

where λ is the thermal conductivity, T is temperature, h and hk are specific enthalpies

of the mixture and species, respectively, and Qrad,i is the radiative heat flux vector. The

transport equations are closed with constitutive relations for the species diffusivities and

the stress tensor, a thermodynamic relation linking enthalpy and temperature, h = h(T ),

and an equation of state, here the ideal gas law:

P =
ρRT

W
, (2.7)

where R is the universal gas constant and W is the mean molecular weight.

There are many possible forms for the species diffusion coefficients [61]. In S3D, a

mixture-averaged formulation based on a form of Fick’s law is used:

jk,i = ρYkVk,i, (2.8)

= −ρYkDk

Xk

∂Xk

∂xi
, (2.9)

= −ρDk
∂Yk

∂xi
− ρDkYk

W

∂W

∂xi
, (2.10)

where Dk is a mixture-averaged diffusion coefficient, computed using the Chemkin

Transport package [87], Xk is the mole fraction of species k, and Vk,i is the diffusion

velocity of species k. The form of Vk,i is a simplification of the Maxwell-Stefan equations

and suggests a diffusion velocity relative to a molar-averaged velocity [61]. However, the

form of jk,i in Eq. (2.9) implies a mass-averaged velocity if the sum of the diffusion fluxes is
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equal to zero. This inconsistency is not severe given the mixture-averaged approximation,

however. S3D transports all gaseous species except nitrogen, which is computed so as to

satisfy continuity (that is, YN2 = 1−
∑

k 6=N2 Yk). This approach implicitly forces a null

sum of the species diffusivities, which is not true as written in Eq. (2.10).

The viscous stress tensor is computed in S3D as

τi,j = µ

(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
δi,j

∂vl

∂xl

)
, (2.11)

where µ is the viscosity, and δi,j is the Kronecker delta, which equals unity if i = j, and

zero otherwise.

The solution algorithm of S3D is as follows:

1. Initialize T , P , Yk, and vi fields throughout the domain. These variables are the

primitive variables.

2. From the primitive variables, initialize conserved, transported variables: ρ, ρvi,

ρeo, ρYk. The average molecular weight is computed from the composition field

using W = (
∑

k Yk/Wk)−1. Density is computed from the ideal gas law ρ =

WP/RT . Total energy is computed from Eq. (2.5), where h =
∑

k Ykhk, and

hk = hk,ref +
∫ T
Tref Cp,k(T )dT . A lookup table is computed using Chemkin for all

species enthalpies and heat capacities as a function of temperature. Values of Cp,k,

and hk are then linearly interpolated from the tables.

3. The solution field is integrated in time by evaluating the right-hand side (RHS) of

the governing transport equations, Eqs. (2.1)-(2.4), shown above.

4. Periodically (usually after each step) the solution (conserved variables) are filtered

to remove any high wavenumber content.

5. Primitive variables are then computed from the conserved variables, which are used

in computing constitutive relations for fluxes, and thermodynamic and transport

properties (such as viscosity).

6. Integration then continues with step 3 to the end of the simulation.

The timestep size is either set manually at an accurate and safe level, based on the

estimated error reported by the embedded Runge-Kutta solver, or set by a PID controller
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that adjusts the timestep size to maintain a given error threshold. Runtime parameters

can be adjusted during the simulation through an active file that is read periodically

during the integration. Parameters include error tolerances, ending timestep, frequency

to save output files and solution monitors, and timestep size. Three types of output are

reported:

1. A save file (the primary output), which also serves as a restart file and consists of

the temperature, pressure, velocity, and composition fields at a given time. A single

file is saved for the fields of each processor.

2. Runtime output including the time, timestep, and integration error. Also, files

consisting of maximum and minimum field values during the integration, as well

as information on the acoustic CFL timestep, and the location and source of peak

errors are created.

3. Visualization files for examination and processing of solution fields including quan-

tities such as reaction rates, vorticity fields, and other scalar fields.

S3D is operated in two modes: solve mode and postprocessing mode. The solve

mode was described above. Postprocessing is done by looping over a selected list of

savefiles, loading the primitive variables, and performing user-defined operations on the

fields. This processing is performed to compute many derived quantities, such as flame

dynamics and statistical quantities. The postprocessing is not usually computationally

intensive, compared to the solution itself. In some cases, temporal quantities available

only as the solution progresses are of interest, in which case additional output would be

required as the solution progresses.

S3D uses several systems of units. The base system is SI, but interfacing with Chemkin

requires conversion to CGS units at the point of the interface. S3D itself nondimension-

alizes solution variables within the code, and SI units are used for input and output

only. However, it is not true that S3D is a nondimensional code in the traditional sense.

Generally, nondimensionalization is performed on the governing equations, transforming

them to new equations in which dimensionless groups such as the Reynolds number

and Mach numbers appear in coefficients to the terms in the governing PDEs. These

terms are not present in S3D, and Eqs. (2.1)-(2.4) are solved as shown. The traditional

nondimensionalization is performed using physically relevant reference quantities, such

that the partial derivative terms are all order unity, and coefficients to those terms with
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the dimensionless numbers contain the magnitude of the whole term. For example, the

constant-property, incompressible Navier-Stokes equations are given by

∂vi

∂xi
= 0, (2.12)

vi
∂vj

∂xi
= −1

ρ

∂P

∂xi
+ ν

∂2vj

∂xj∂xi
. (2.13)

If velocity is scaled by Vr, length by Lr, and pressure by ρV 2
r , the result is

∂v∗i
∂x∗i

= 0, (2.14)

v∗i
∂v∗j
∂x∗i

= −1
ρ

∂P ∗

∂x∗i
+
(

1
Re

)
∂2v∗j
∂x∗j∂x

∗
i

, (2.15)

where starred quantities are nondimensional (e.g., v∗i = vi/Vr). One may think of S3D

as a dimensional code using S3D units rather than SI units. In practice, however, the

unit conversion in S3D is performed to minimize the disparity in ranges of magnitude of

the transported and primitive quantities.

2.1 Grid Resolution

One of the features of DNS is the resolution of the important physics present in the

problem. In order to minimize numerical diffusion, which could compete with viscous

diffusion, a fine computational grid is required with an associated high computational

cost. To minimize the number of grid points required (and computational roundoff

errors), higher-order finite difference approximations to derivative terms are employed.

Finite difference methods are in contrast to spectral methods in which derivatives are

evaluated exactly in the frequency domain, and errors arise only through the finite number

of wavenumbers (and roundoff error). Finite difference methods allow more general

boundary conditions than spectral methods, which are limited to periodic boundary

conditions in the spectral directions. Finite differences are also local in physical space,

which increases parallel communication efficiency.

When applying finite difference methods, it is important to quantify the truncation

error. Often, this is done by successive grid refinement on a full simulation scale. Here

the relative error of four central difference schemes of increasing order are computed in

terms of Fourier modes. We can consider functions that evolve as the solution to the
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Navier-Stokes equations as being representable by a complex Fourier series of which a

given term n is

φn(x) = cn · eiκnx, (2.16)

where κ is the wavenumber of the mode and c is a complex coefficient multiplying the

mode. The subscript n is dropped here for convenience.

The derivative of φ with respect to x is exactly given by

dφ

dx
= cniκe

iκx. (2.17)

The discrete approximation to a derivative is represented as

(
δφ

δx

)
j

=
∑

k akφj+k

∆x
, (2.18)

where the summation is over some finite number of grid points in the vicinity of xj , ak

are constant coefficients, and φj+k are values φ(xj+k) at the grid points, where xj = j∆x.

The coefficients ak are determined using Taylor series. The number of grid points in the

discrete derivative increases with the order of accuracy of the approximation. Lomax

outlines a method of determining the coefficients ak for any order derivative for any

order approximation using a “Taylor Table” [88]. A short Matlab script was written to

generalize the method and is listed in Appendix A. The script computes coefficients for

any order derivative, to any order of accuracy, with the base point at any position in the

grid stencil. Here, only central differences are considered of order 2, 4, 6, and 8. Table

2.1 gives the coefficients of the points in the stencil computed using the program.

The relative error of the approximate derivative is obtained by substituting (2.16) into

(2.18) and comparing to (2.17). The substitution yields

(
δφ

δx

)
j

=
c

∆x

∑
k

ak · eiκ∆x·(j+k), (2.19)

=
c · eiκxj

∆x

∑
k

ake
iκ∆x·k. (2.20)
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Table 2.1. First-order derivative finite difference coefficients.

ak

Position, k 2nd 4th 6th 8th

-4 0 0 0 1/280
-3 0 0 -1/60 -4/105
-2 0 1/12 3/20 1/5
-1 -1/2 -2/3 -3/4/ -4/5
0 0 0 0 0
1 1/2 2/3 3/4/ 4/5
2 0 -1/12 -3/20 -1/5
3 0 0 1/60 4/105
4 0 0 0 -1/280

The relative error of the derivative then is

ε = 1− 1
iκ∆x

∑
k

ake
iκ∆x·k. (2.21)

This equation is simplified by first expanding the complex exponential using the Euler

formula exp(±iz) = cos(z)± i sin(z). Since ak = −a−k in Table 2.1, the cosine terms will

drop out of Eq. (2.21). For the same reason, the sine terms of equal magnitude k are

additive and result in (for central differences):

ε = 1− 2
κ∆x

∑
k≥0

ak sin(κ∆x · k). (2.22)

Figure 2.1 shows the logarithm of the relative error versus κ∆x, which is allowed to

vary up to π, as dictated by the Nyquist limit. That is, one grid spacing can handle no

less than half a wavelength, or one grid cell for half a wave. Of interest is the number of

grid points required for half a wave (from peak to trough). This number is given by

N1/2 =
⌈ π

κ∆x

⌉
. (2.23)

An error of 0.1% for the second-, fourth-, sixth-, and eighth-order approximations gives

N1/2 of 41.9, 7.7, 4.3, and 3.2 points, respectively (to be rounded up). So, for an eighth-

order stencil we can expect to commit just over 0.1% error if we have three intervals, or

four points from peak-to-peak on a given Fourier mode.
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Figure 2.1. Relative error of centered finite differences of indicated order for a single
Fourier mode.

Clearly, there is a huge discrepancy in resolution requirements between the high-

and low-order methods. In general, a given signal will be composed of many Fourier

modes, many of which will not be resolvable, and the issue becomes one of making sure

that the amount of spectral energy in the high wavenumber region of the signal is very

small. In high-order codes with low numerical diffusion, high wavenumber content must

be filtered out to prevent aliasing errors. Aliasing errors occur when a solution produces

high wavenumbers that, because they cannot be resolved on the grid, show up at lower

wavenumbers. For example, take a function with frequency fo, sampled at a frequency

fs (at points nTs = n/fs, n = 0, 1, 2, ...), such as sin(2πfonTs). The same function is

obtained by adding a multiple of 2π to the argument: sin(2πfonTs + 2πm). This is true

for any integer m, so take m as a multiple of n, and rearrange the second expression to

get

sin(2πfonTs) = sin(2π(fo + k/Ts)nTs), (2.24)

where k is an integer. Figure 2.2 shows an example for fo = 2, fs = 1.4fo, and k = 1.

2.2 Parallel Scaling

S3D is a massively parallel DNS code that is highly portable and maintains high

parallel efficiency on tens of thousands of processors. S3D is parallelized with MPI
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Figure 2.2. Example of aliasing of two periodic functions. The functions are the same
at the uniformly spaced sample points shown.

through a rectangular-prism (i.e., a stretched cube) domain decomposition in which each

processor operates on the same number of grid cells. The finite difference stencils and

explicit time integration require only nearest-neighbor communication between processor

domains. As a result, good parallel efficiency is maintained as the number of processors

increases for a fixed grid density per processor. The parallel efficiency is often defined as

E =
tserial

Np · tparallel
. (2.25)

Efficiency is decreased through parallel costs (primarily message passing among proces-

sors) that does not directly contribute to the computation of the problem. There are two

important parallel scaling tests termed weak and strong scaling. In a strong scaling test,

the efficiency is measured as the number of processors increases for a fixed problem size.

In this mode, the communication-to-computation ratio increases and a point is reached

where further parallelization is not beneficial as efficiency becomes low. Analogous to the

parallel efficiency is the speedup factor

S =
tserial

tparallel
. (2.26)

Strong parallel scaling is subject to Amdahl’s law which relates the maximum theoretical

speedup for a fixed problem size. If f is the fraction of a given problem that must be
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computed serially (that is, cannot benefit from parallelization) and (1− f) is the fraction

that can be parallelized, then Amdahl’s law states

S =
tserial

ftserial + (1− f)tserial/Np
. (2.27)

As the number of processors increases, the speedup factor approaches 1/f , giving an

upper bound on the possible speedup. For example, if f = 0.01, the maximum speedup

factor is 100.

Most practical problems are not parallelized with a fixed computation size, but rather,

the problem size is increased as the number of processors increases. A weak scaling test

maintains a fixed computation density per processor as the number of processors in-

creases. In this case, efficiency decreases primarily as the communication-to-computation

ratio increases for a given problem. S3D contains very little global communication and

maintains nearly constant normalized computational cost (i.e., CPU-hours per grid point,

per timestep) as the number of processors increases to as high as 20,000.

A series of test cases was conducted to examine the scaling efficiency of S3D on a

parallel Linux cluster called Jet. This machine consists of 141 nodes, with two processors

each. The processors are 2 GHz AMD Opterons and each node has 2 GB memory with

a fast Infiniband switch for communications. Generally, the S3D code tends to be CPU

limited as opposed to memory limited. Common application of DNS involves a very large

number of grid points due to high spatial resolution requirement and domain size. Because

of the fine grid, the timestep size is small due to the acoustic CFL. The upper bound

of the acoustic speed is relatively constant at the flame temperature, and the maximum

timestep size is proportional to the grid spacing. As a result, relatively short runtimes

are computed. For cell spacings on the order of 20 µm, run times of a millisecond or less

are common, corresponding to order 100,000 timesteps.

Soot calculations differ from gas-only cases in that one would like to maximize the

simulation time to maximize the soot growth. For constant overall computational cost,

longer times (e.g., a large number of timesteps) result in fewer grid cells. Hence, the

computational domain size can decrease, or the cell spacing can increase. At longer run

times, the flow velocity can be smaller because the same number of flow-through times

can be maintained. This lower velocity is helpful in that the corresponding strain rates



33

are lower; hence both flames and soot layers are thicker, resulting in decreased resolution

requirements.

As a matter of parallel efficiency, to run to longer times requires more processors for a

given wall-clock time, but more processors means the number of grid points per processor

decreases. As this occurs, the communication-to-computation ratio may be expected to

increase, with corresponding decreases in the parallel efficiency. Here, efficiency as the

grid density per processor changes is examined.

The simulation is that of a two-dimensional temporal mixing layer, described later.

The grid size is 256×512 for 131,072 total grid cells. Two hundred timesteps were

performed. The grid size is 39 µm in both directions. Twenty-two transport equations are

solved corresponding to mass, two momentum components, energy, and 18 transported

chemical species. For these calculations, sixth-order derivatives were used, with an

eighth-order spatial filter. Input and output were suppressed for everything except

printing of the output statistics and reading of the active file, which are expected to be

a small part of the overall run time. Five cases were considered using 4 to 64 processors.

Table 2.2 shows the processors, the number of nodes per processor, and the run time.

The average computational cost is 3× 10−9 CPU-hrs/NgridNpNeqns.

As shown in the table, for 64 processors, the grid density is relatively small. For

isoefficiency, a plot of the log of the run time versus the log of the number of processors

should be linear. Figure 2.3 shows this to be true for the scaling results. Hence,

even for a relatively low grid density, a good parallel efficiency is obtained, indicating

that the simulations are far from the limit where communication costs begin to domi-

nate. These results are conservative compared to three-dimensional cases in which much

higher grid densities are used (typically 303 to 503 grid cells per processor), reducing the

communication-to-computation cost with nearest-neighbor communication.

Table 2.2. Parallel scaling results.

Np Ngrid/Np trun (min)
4 32768 28.75
8 16384 13.4
16 8192 7.6
32 4096 3.5
64 2048 1.63
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Figure 2.3. Plot of parallel run time versus number of processors.

2.3 Ethylene Chemical Mechanism

In combustion of typical hydrocarbon flames, the number of chemical species required

to describe the reacting system ranges from around ten for hydrogen, to around 1000

for higher hydrocarbons, such as those comprising a typical JP8 jet fuel. Currently, it is

not feasible to transport large numbers of chemical species for combustion simulations,

and reduced mechanisms are employed which reduce the number of chemical species,

as well as the number of reactions among those species. These mechanisms will often

make use of steady state and partial equilibrium assumptions [2], which reduce the

dimensionality (number of species) by taking advantage of timescale separation. There

are many approaches and methods for generating a reduced description of a chemical

mechanism, including computational singular perturbation theory [89], intrinsic low-

dimensional manifold methods [36], rate controlled constrained equilibrium [90], directed

relation graph methods [91], sensitivity analysis, and principle components analysis [92].

For a review, see [93]. Here, a description of a reduced ethylene mechanism, which is

used in all simulations, is given. In addition, a one-step mechanism was used for some

preliminary case setups, and is briefly described.

2.3.1 Reduced Mechanism Description

Ethylene is of interest as a fuel for two reasons. First, it is one of the smallest

hydrocarbons with appreciable sooting tendency. Second, it is a small hydrocarbon that

also exhibits complexities not present in hydrogen and carbon monoxide systems, such
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as bimodal extinction/ignition behavior. The reduced ethylene mechanism used here was

developed by Lu and Law [94]. The mechanism consists of 15 global reaction steps, and

the following 19 transported species:

H2, H, O, O2, OH, H2O, HO2, H2O2, CH3, CH4, CO, CO2, CH2O, C2H2,

C2H4, C2H6, CH2CO, C3H6, N2.

In addition, the following quasi-steady state species are included:

C, CH, CH2, CH2*, HCO, CH3O, C2H3, C2H5, HCCO, CH2CHO.

The mechanism is based on a detailed mechanism consisting of 70 chemical species

and 463 chemical reactions [95]. The first step in the mechanism reduction, termed

skeletal reduction, is to eliminate unimportant species and reactions. This is done

throughout, with the constraint that the mechanism should transport gaseous species

that are needed for soot reactions, namely, C2H2, H2, CO, O2, and OH. The skeletal

reduction was performed using the directed relation graph method [91]. This was followed

by sensitivity analysis to further reduce the number of crucial chemical species. The

resulting number of chemical species retained at this stage was 29, with 167 elementary

reactions. Of these 29 species, 10 were approximated to be in quasi-steady state (QSS) by

using computational singular perturbation [96]. QSS species concentrations are required

to compute the reaction rates of transported species, and the former are computed as

functions of the latter. It is important, however, that this functional relationship can

be computed analytically. Often, the QSS species concentrations must be computed by

numerical inversion of a nonlinear system, which is costly. This numerical approach can

cause problems when used in a reacting flow code, since failure to fully converge the

nonlinear solve can result in instability. These problems are eliminated in the present

reduced mechanism by computing the QSS species concentrations analytically. This was

done using a linearized QSS approximation with a QSS graph method [97].

2.3.2 Computational Costs and Speedup

As noted above, computational costs are associated with the number of chemical

species retained in a mechanism, as well as the corresponding complexity in evaluating

the chemical source terms (which usually increases nonlinearly with increasing number

of species). In addition, computational costs arise from chemical stiffness associated

with very small timescales. This is especially evident when explicit integration methods
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are used, which is the case in the present DNS context. The third major source of

computational cost is in resolving the lengthscales of species. If a mechanism includes

species that are very thin in physical space, the number of DNS grid points required

for numerical accuracy and stability increases. In summary, the three major sources of

computational cost associated with a chemical mechanism arise from

1. the number of chemical species transported and the associated computational cost of

computing reaction sources terms, as well as transport properties, such as viscosities

and diffusivities.

2. the chemical timescales of the reaction mechanism, which dictate the largest possible

timestep: smaller scales required more steps.

3. the lengthscales of minor species profiles: smaller scales require more grid points.

The speedup factor associated with these three sources of computational costs are

significant. In three-dimensional DNS, the number of transport equations is 5+Nsp =

75 for the detailed mechanism, and 24 for the reduced mechanism, giving a factor of

3 cost reduction. The chemical stiffness was found to be reduced by a factor of 10

with the reduced mechanism. This value was computed from one-dimensional ignition

tests consisting of a temporal-spatial ignition from a temperature spike (600-1800 K)

on an open domain with a 10 µm grid spacing. After ignition, and during the diffusive

propagation of the flame, the acoustic CFL was 2.74×10−8 s, and an accurate timestep size

with the reduced mechanism was 6.1×10−9 s. For this case, the timestep size approached

the acoustic CFL whereas the detailed mechanism was limited by chemical stiffness to a

timestep size approximated ten times smaller. Finally, the reduced mechanism was found

to require about 1.5 times fewer grid points, for the same resolution (e.g., number of grid

points across the thinnest structures), than the detailed mechanism. In each direction,

this results in a three-dimensional speedup factor of about 3.4. The overall speedup

factor of the reduced mechanism, then, is about 100 for three-dimensional calculations

and about 67 in two dimensions. These results do not include likely speedup associated

with reduced cost of calculation of chemical source terms and transport properties for the

reduced mechanism over the detailed mechanism.

DNS computational costs scale approximately asRe3 (with three space dimensions and

time) [17]. A computational savings of 100 equates to a factor of 4.7 increase in Reynolds

number or similar increases in domain size for constant run time/step size. The large
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computational savings make realistic, fully resolved combustion simulations with complex

chemistry possible and allow the extension of DNS with realistic chemistry to the domain

of three-dimensional simulations. A three-dimensional temporal jet on a 1.6×1×0.8 cm

domain with a 25 µm grid spacing, run to 1 ms with the reduced mechanism, currently

costs about 1 million CPU hours on current machines, so a factor of 100 speedup over the

detailed mechanism is important. The two-dimensional decaying turbulence simulations

presented later required 32,500 CPU-hours to run to 5 ms on a 2 GHz, 64 bit AMD

Opteron Linux Cluster (Sandia National Laboratories’ Thunderbird machine), with a

25 µm grid, a 2×3 cm domain, and an average step size of 15 ns. Clearly, the same

calculation with the detailed mechanism would be prohibitive.

2.3.3 Mechanism Validations

The reduced chemical mechanism was extensively validated for the range of conditions

experienced in the DNS including extinction/ignition, laminar flame speed, and diffusion

flame solutions. Some of these results were repeated and are presented here. There are

three sets of conditions which are of interest when testing the mechanism, corresponding

to three gas conditions studied. These are listed in Table 2.3. The first is simply a

pure fuel and air mixture with streams at 300 K. The second consists of streams at

550 K, a stoichiometric mixture fraction of 0.17, and slight oxygen enrichment at the

stoichiometric point. The third set of conditions is intermediate and consists of preheating

to 550 K, with a stoichiometric mixture fraction of 0.25, but no oxygen enrichment.

This third set of conditions is not explicitly tested here. The first condition is used

in one-dimensional relaxing, sooting flame studies, two-dimensional temporal mixing

layers, and two-dimensional decaying turbulence. The second condition was used in

three-dimensional extinction/ignition studies, and the third condition is used in the

three-dimensional sooting study. Only in diffusion flame contexts does the value of the

stoichiometric mixture fraction have meaning. The stoichiometric mixture fraction is

varied by systematically moving nitrogen from the air stream to the fuel stream, resulting

in a change in the position of the flame in the mixture coordinate, while maintaining

a constant adiabatic flame temperature. This can have important impacts on flame

dynamics but, of course, does not show up in premixed or 0-D configurations. The effect

of preheating and oxygen enrichment is expected to have the strongest impact on the

validity of the reduced mechanism.
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Table 2.3. Fuel and oxidizer stream compositions.

Mole Fractions
Configuration Stream C2H4 N2 O2 T (K)

Fuel 1.0 0 — 300
1 Oxidizer — 0.79 0.21 300

Fuel 0.2546 0.7454 — 550
2 Oxidizer — 0.7359 0.2641 550

Fuel 0.42205 0.57795 — 550
3 Oxidizer — 0.73806 0.26914 550

Results comparing the detailed and reduced mechanisms are shown in canonical con-

figurations consisting of opposed jet diffusion flames, premixed diffusion flames, perfectly

stirred reactors (PSR), and batch reactors. All calculations are performed using the

Chemkin suite of programs: Oppdif, Premix, PSR, and Senkin [86]. Here the overall

flame behavior is primarily of concern, and not so much emphasis is placed on specific

species profiles. However, species profiles are the focus of the opposed jet calculations,

which are the most directly relevant quantities to the present DNS simulations.

2.3.3.1 Ignition Tests

The Senkin program represents a 0-D batch reactor and was used to compute ignition

delay times for gas conditions 1 and 2 as a function of temperature. Figure 2.4 shows the

results. Clearly, the effect of preheating is built into these calculations since temperature

(actually, scaled inverse temperature) is the abscissa. The ignition results are practically

the same for the two gas conditions and show very good agreement between the reduced

and detailed mechanisms. In both conditions, the detailed ignition delay is a little higher

than the reduced delay time, with the spacing between the detailed and reduced curves

being about the same for both sets of gas conditions.

2.3.3.2 PSR Extinction

Figure 2.5 shows the extinction residence time in a PSR as a function of the equivalence

ratio of the mixture. The PSR residence time is the volume of the PSR divided by the

volumetric flow rate of the PSR (exit) gases. The point of extinction is just the point at

which the temperature is discontinuous as the residence time is decreased (i.e., when the

chemical state jumps from the burning to the unburning branch of the famed S-curve.

Conditions 1 are at a lower temperature than conditions 2 and tolerate a lower residence
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Figure 2.4. Comparison of detailed and reduced mechanism ignition delay time under
two sets of gas conditions.
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time (higher flow, hence mixing, rate). The shape of the two curves is the same, and the

agreement between the reduced and detailed mechanism is excellent, but slightly better

for conditions 1. Here it is noted that the abscissa is the equivalence ratio. Here, a much

wider range of fuel-oxygen ratio is exercised than occurs due to the oxygen enrichment

in gas conditions 2 (which is achieved by reducing the stoichiometric nitrogen by about

15%). Hence, given only a validation of conditions 1, the validity of conditions 2 would

not be a surprise. Of course, temperature may have a strong impact, but the validity of

the ignition tests showed that temperature effects are nicely handled.

2.3.3.3 Laminar Premixed Flame Speed

While premixed flames are not explicitly investigated, three-dimensional turbulent

combustion may have significant premixed flame propagation. This is especially true

in regions of flame extinction where substantial interstream mixing may occur before

ignition processes take over. Figure 2.6 shows the laminar premixed flame velocity for

the two gas conditions, for the reduced and detailed mechanisms. The flame velocity is

simply the unburned velocity that causes a steady flame (in the viewer’s coordinates), or,

in flame coordinates, the flame velocity is the velocity at which the unburned reactants
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Figure 2.6. Comparison of detailed and reduced mechanism laminar premixed flame
velocity.



41

approach the flame. This configuration includes effects of both reaction and diffusion,

and the latter will depend (slightly) on the species differences in the mechanisms. The

flame velocity is greater for conditions 2 because of the preheating of the mixture. The

agreement is good for both cases, but better for conditions 1. However, the reduced

mechanism is within 4% of the detailed mechanism under conditions 2. As expected, the

flame speed peaks rich of stoichiometric. Premixed species profiles for conditions 1 (not

shown) are also in excellent agreement. The detailed mechanism calculations did not

converge at the highest values of the equivalence ratio.

2.3.3.4 Opposed Jet Diffusion Flame Comparisons

The previous computational configurations most directly exercise the reaction mech-

anism, but the opposed jet diffusion flame configuration most directly approximate the

conditions of the DNS code. Four simulations were conducted: for each gas condition,

two values of strain rate were compared. Temperature results are shown in Fig. 2.7.

Under conditions 1, the mean extinction strain rate is 850 and 950 s−1 for the detailed

and reduced mechanisms, respectively. For the reduced mechanism, the mean extinction

strain rate was 3650 and 4050 s−1. These results represent about a 10% difference under

both gas conditions. For both gas conditions, the low strain value of 100 s−1 is used,

whereas the 850 s−1 is used as the high strain value for conditions 1, and 3650 s−1 is

(a) Gas Conditions 1 (b) Gas Conditions 2
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Figure 2.7. Comparison of temperature profiles for detailed and reduced mechanisms in
an opposed jet diffusion flame calculation.
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used as the high strain value for conditions 2. These latter values are at extinction for

the detailed mechanism and within 10% of extinction for the reduced mechanism. Most

simulations presented are designed to minimize extinction and ignition, but these are

rigorous tests of the validity of the chemical mechanism. Here, the mean strain rate is

reported, which is calculated as the velocity difference between the streams divided by

the stream separation distance.

The temperature profiles in Fig. 2.7 for the four cases show that the results are within

about 5% between the two mechanisms, with greater discrepancy at higher strain. The

temperature differences will directly result in differences in the species concentrations.

Figures 2.8 and 2.9 show major and minor species profiles, respectively, for the four

cases. Here, several important observations are made:

• Major species profiles show generally good agreement between the reduced and

detailed mechanisms.

• Major and minor species profiles are in better agreement at low strain than high

strain.

• Major species profiles are in slightly better agreement at gas conditions 1 than gas

conditions 2.

• Minor species profiles generally follow the same trend as major species profiles with

respect to the strain level and gas conditions.

• The minor species show noticeable differences between the detailed and reduced

mechanisms. This is likely due to the effects of the raw mechanism differences, but

enhanced by the temperature differences shown previously.

• The minor species profiles are in fairly good agreement for all species shown except

acetylene. Certainly the agreement would be within experimental errors and errors

between the detailed mechanism and experimental data.

• The acetylene profile is higher for the reduced mechanism since the reduced mecha-

nism does not contain pathways to higher hydrocarbons. These pathways would act

as a sink to the acetylene concentration. This overprediction is unfortunate from

the point of view of soot calculations since acetylene acts as the soot nucleation

and growth species. However, again, the error is reasonable, especially with respect
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Figure 2.8. Comparison of major species profiles for opposed jet diffusion flames under
two sets of gas conditions and at two levels of strain, as indicated.
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(a) Gas Conditions 1, Low Strain (b) Gas Conditions 2, Low Strain
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Figure 2.9. Comparison of minor species profiles for opposed jet diffusion flames under
two sets of gas conditions and at two levels of strain, as indicated.
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to uncertainties in current soot mechanisms. Likewise, acetylene is a global soot

reaction species, taking the place of a much more complicated reaction system

involving many higher hydrocarbons and pyrolyzing species.

The reduced ethylene mechanism presented here is shown to be very robust for all

combustion conditions encountered in the DNS. Validations performed of both global

flame properties, as well as individual species profiles, lend confidence in applying the

mechanism to DNS simulation, with the ability to obtain quantitative results that are

accurate representations of the real flow configurations. In addition, the reduced mecha-

nism is shown to provide substantial computational cost savings, allowing more complex

chemistry in turbulent combustion modeling and simulation.

2.3.4 One-Step Ethylene Mechanism

In order to speed up the turnaround time for setup of DNS simulations involving de-

tailed chemistry, a one-step ethylene mechanism was tested. This allows fast exploration

of the impact of turbulent scales, run time, domain size, and other important parameters

that, to first order, only depend on the presence of a flame, and not the right flame. The

single-step mechanism for ethylene combustion by Westbrook and Dryer [98] is

C2H4 + 3O2 → 2CO2 + 2H2O. (2.28)

The rate expression for this reaction is given by

d[C2H4]
dt

= −2× 1012 · exp (−15098/T )[C2H4]0.1[O2]1.65, (2.29)

with concentrations in units of mole per cubic centimeter and temperature units of Kelvin.

This mechanism was implemented in S3D and run in a two-dimensional temporal

mixing layer. The results were poor. Very small timesteps were required to maintain

stability, indicating severe chemical stiffness. For reference, timesteps of 1×10−9 seconds

gave unacceptable integration errors while the acoustic CFL was 1.5 × 10−7 s on a 60

µm grid–more than a factor of 60 higher. This behavior was unexpected. The activation

energy is not too large (a large value tending to decrease flame thickness, requiring smaller

grid sizes). As a simple test of the mechanism, the chemical timescale was estimated as
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τ =
∆[C2H4]max∣∣∣d[C2H4]

dt

∣∣∣
max

. (2.30)

When this expression is evaluated at 2000 K, with a stoichiometric unburned composition,

the estimated timescale is 1 × 10−5 s, which is much larger than the timesteps taken in

the DNS run.

It turns out that the problem is due to the subunity reaction order on the ethylene

concentration. Chun Sang Yoo [99] provided an identical version of the above reaction

with the following modification. Instead of a reaction order of 0.1, the expression 0.1 +

0.9 exp (−800YC2H4) was used. This modification is explained here as follows. It is not

immediately obvious that the low reaction order will not work. The revised formula

transitions between 0.1 at a large concentration of ethylene and unity at small ethylene

concentrations. At very small ethylene concentrations, it is not important to get the right

rate, since the overall composition profile is what is desired, not the rate.

Figure 2.10 shows the normalized reaction rate of ethylene versus ethylene concen-

tration at constant temperature and oxygen concentration. The dashed line shows the

original rate, which is linear on the log scale, and has a slope of 0.1. The solid line is

the variable-order rate showing two regions of constant slope with a smooth variation.
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Figure 2.10. Plot of the normalized rate at constant temperature and oxygen concen-
tration versus ethylene concentration. The dashed line is the original 0.1 order curve.
Solid line is the revised variable-order curve.
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This figure is only intended to show the shape of the curves, not the magnitudes. At

low concentration, the slope becomes 1, corresponding to the unity reaction order. The

point of these figures is that the rate of the original formulation drops much slower with

concentration than the revised formulation. Qualitatively, the rate is still relatively large

when the composition is small, which makes the system very sensitive to the timestep size.

Comparing the curves for a given timestep, at low concentration, the fractional change in

the ethylene concentration will be much larger in the original 0.1 order case than for the

unity order curve, or, in other words, for equal fractional changes in concentration, the

order 0.1 curve will require a smaller timestep than the order 1 curve, due to the larger

rate of the former.

Figure 2.11 shows more quantitatively the reason for this. Applying expression in Eq.

(2.30) to the reaction rate gives

τorig =
[C2H4]

[C2H4]0.1
= [C2H4]0.9, (2.31)

τnew =
[C2H4]

[C2H4]0.1+0.9 exp (−800YC2H4)
= [C2H4]0.9(1−exp (−800YC2H4)). (2.32)

In the original case, the timescale goes to zero as the concentration goes to zero, but as

the chemical timescale decreases, the timestep size must also decrease, which increases
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Figure 2.11. Plot of the normalized timescale versus the ethylene concentration. The
dashed line is the original 0.1 order curve. Solid line is the revised variable-order curve.
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the stiffness, all else being equal (e.g., flow properties). In the variable-order case, at large

concentration, the timescale decreases as in the original case, but as the concentration of

ethylene goes to zero, the timescale becomes finite because the exponent becomes zero.

Hence, the stiffness goes away at small concentrations. Figure 2.11 shows the behavior

graphically. This same trouble may be expected to occur, in general, for reactants with

reaction orders less than one. The solution is a neat trick that works under the assumption

that at near-zero concentration the rate can and should be near zero, even if the rate

expression indicates otherwise. Part of the problem, of course, is that the rate expression

is being applied in flame regions of low ethylene concentration, which is likely outside the

range of the global model anyway.

The approach considered here lends ideas of how to approach stiffness-related problems

in other settings. For example, it may be feasible to use unity Lewis number soot diffusion

in regions of little or no soot to aid stability induced by low diffusivity and/or the form

of the soot diffusion term.

2.4 Soot Model

Soot forms at high temperatures on the fuel-rich side of diffusion flames where there

is insufficient oxygen for complete combustion. In these regions, the fuel is pyrolyzed to

unsaturated hydrocarbon species, which react to form aromatic species. These aromatics

then grow by the addition of other aromatics and smaller alkyl species, such as acetylene,

to form polyaromatic hydrocarbons (PAH), which, upon further growth, form the smallest

soot particles on the order of 1 nm in size and containing on the order of a hundred carbon

atoms [100]. These particles grow, coagulate, and oxidize (by mainly O2 and OH) in a

flame. Figure 2.12 is a schematic of the soot evolution adapted from Bockhorn [3]. Soot

begins as gas phase species and grows to become solid particles. Several reviews detailing

soot chemistry have been published [101, 102, 100].

Soot models consist of two important components:

1. Description of the soot nucleation and growth/oxidation mechanisms, and

2. Representation of the particle size distribution (PSD).

Because of the highly complex nature of soot formation, many attempts have been

made to simplify the chemistry to account for only the most important aspects. For

example, in practical applications, one is not interested in a highly detailed description
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Figure 2.12. Schematic of soot evolution: nucleation, growth/oxidation, coagulation.
Adapted from Ref. [3]

of the chemistry, but rather with the amount of soot formed and the impact this has

on temperature and radiative properties of the flame. The level of chemistry included

is dictated by the satisfactory representation of desired quantities. Kennedy (1997) has

reviewed at least 33 soot models which range from empirical correlations based on the

local mixture fraction, to semiempirical multistep global schemes, to detailed mechanisms

for PAH and soot growth [100].

A common approach in soot modeling is to consider a four-process mechanism consist-

ing of nucleation, growth, oxidation, and particle coagulation. Each process may consist

of many individual reaction steps (e.g., oxidation in terms of O2 and OH), but often, the

processes are written explicitly as individual steps. Here, simulations with soot are based

on the model of Leung and Lindstedt [5], which has been widely applied in simulations of

turbulent sooting flames. The model assumes a monodispersed size distribution defined

in terms of the particle number density, n, and soot mass fraction, Ys. The four reaction

steps are given by

1. nucleation: C2H2 → 2C(s) + H2

2. growth: nC(s) + C2H2 → (n + 2)C(s) + H2

3. oxidation: C(s) + 1
2O2 → CO

4. coagulation: (n) → (n− 1)

Here, C(s) represents soot (n denoting n carbons) and a mole of soot is taken as a mole

of carbon atoms. There are four gaseous species involved, C2H2, O2, H2, and CO. The

following reactions rates are given for each of the above reactions:

R1 = 0.1× 105e−21100/T [C2H2], (2.33)

R2 = 0.6× 104e−12100/T [C2H2]
√
As, (2.34)

R3 = 0.1× 105T 1/2e−19680/T [O2]As, (2.35)
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R4 = 2Ca

(
6Wc

πρs

)1/6(6kbT

ρs

)1/2(ρYs

Wc

)1/6

n11/6. (2.36)

The units of reactions 1-3 are kilomole per cubic meter per second, and the coagulation

rate is given in units of number per cubic meter per second. The quantity As is the particle

surface area per unit volume, given by

As = π

(
6ρYs

πρs

)2/3

n1/3, (2.37)

where ρs is the soot density. Soot particles are assumed spherical, all carbon, and with

a constant particle density of 1850 kg/m3. The first nucleated soot particle is assumed

to consist of 100 carbon atoms, and the parameter Ca is taken to be 9.0. Since soot

particles are small enough, O(50 nm), and the Stokes number is much smaller than unity,

the soot particles are assumed to follow the gas velocity without any impact on the

overall fluid momentum. The three-dimensional simulations transport three moments, as

discussed below. For the one-dimensional and two-dimensional simulations, the following

two transport equations were added to the set given by Eqs. (2.1)-(2.4):

soot mass fraction:
∂(ρYs)
∂t

= −∂(ρYsvi)
∂xi

− ∂js,i
∂x

+ SYs , (2.38)

particle number density:
∂n

∂t
= −∂(nvi)

∂xi
− ∂jn,i

∂x
+ Sn. (2.39)

The soot reactions are fully coupled to the gas reactions through additional source

terms added to the species transport equations for C2H2, O2, H2, and CO. The reaction

source terms for soot reactions are given by

number density: Sn =
2NaR1

Cmin
−R4, (2.40)

soot mass fraction: SYs = Wc · (2R1 + 2R2 −R3), (2.41)

C2H2: SC2H2 = −WC2H2 · (R1 +R2), (2.42)

O2: SO2 = −WO2 ·R3/2, (2.43)

H2: SH2 = −WH2 · (R1 +R2), (2.44)
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CO: SCO = WCO ·R3. (2.45)

With the addition of soot, density in the governing equations refers to the total density

(gas + soot), as does the total energy. The internal energy is computed using the ideal

mixing rule e = Ygeg+Yses. The heat capacity is computed similarly. The soot energy and

heat capacity are computed assuming the soot exists as graphite. The system pressure is

computed as in Eq. (2.7), but there, ρ = ρg, with

ρg =
ρ(1− Ys)
1− ρYs

ρs

, (2.46)

where ρYs/ρs = fv. Here, the denominator is included, but expected to depart from unity

only in the sixth decimal place or smaller since soot volume fractions are on the order of

1 ppmv or less. The heat flux vector in Eq. (2.6) is modified by the addition of the term

hsjs.

The soot diffusion flux was computed from

jM = −ρDp1∇
(

1
Les

M

ρ

)
− 0.556M

ν

T
∇T, (2.47)

where M is either n or ρYs. The first term represents Brownian diffusion, and the

second term accounts for thermophoresis. This expression was derived similar to [30]

from the general transport equation for the kth particle size and applying the definition

of the rth soot mass-moment Mr =
∑∞

k=1m
r
1k

rnk, (with mk = km1). Assuming the

soot particle diffusivity in the free-molecular regime varies inversely as the square of the

particle diameter as in [103], Dp,k ∝ k−2/3, so Dp,k = Dp,1k
−2/3. This results in fractional

moments (M1/3 and M−2/3) in the diffusion flux of the transport equations, which are

closed by logarithmic interpolation of M0 and M1. Equation (2.47) results from assuming

a unity Lewis number for particles of size k = 1, Les = k2/3 = (ρYs/nm1)2/3, where k

is the number of carbons in the mean soot size defined by M0 and M1. The first term

in Eq. (2.47) is negligible [30], but is included for completeness. For example, nominal

conditions of 1500 K and a volume fraction of 1 ppmv, and a number density of 1× 1017

m−3, give Les ≈ 9500. As implemented, Les is assumed to be locally constant and,

therefore, taken outside the gradient.
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2.5 The Method of Moments

As noted above, the representation of the particle size distribution is important in soot

modeling. Two-moment models assume a monodispersed size distribution in terms of the

number density and soot mass fraction, but often, they are not rigorously formulated

as moment methods. The three-dimensional soot simulation transports three moments,

assuming a lognormal particle size distribution, and the method of moments is described

here in more detail. A particle size distribution can be written in a discrete form or

a continuous form. Here, the discrete form is emphasized since this is more physically

relevant for real particles composed of atoms. A continuous representation is also applied

when convenient.

Several approaches are employed for representing the PSD, listed below in decreasing

order of computational cost:

• Direct methods, in which all particle sizes are accounted for.

• Sectional methods, in which a few representative (lumped) particle sizes are tracked.

• Moment methods, in which a few (usually two to six) moments of the PSD are

tracked.

Direct methods are not employed in spatially varying flows for soot formation. Sectional

methods have been employed in two-dimensional simulations of soot formation in laminar

flames [104, 11]. By far the most common approach for turbulent simulations is the

method of moments since this method requires the fewest transport equations (one for

each moment considered).

The starting point for the method is the balance equation for the number density,

written as

∂ni

∂t
+
∂vkni

∂xk
= −

∂njVi,k

∂xk
+ Si, (2.48)

where ni has units of number per cubic meter, Vj,k is the diffusion velocity of particle size

i, and Si = Ni + Gi + Ci is the reaction source term with nucleation, net growth, and

coagulation components, respectively, with units of number per cubic meter per second.

Moments of the size distribution are defined as

Mr =
∞∑
i=1

mr
ini, (2.49)
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where Mr is the rth moment, and mi is the mass of particle i. This expression defines

a mass-moment, which is primarily used here although other moments are possible and

useful. The particle masses are assumed to differ by a single carbon atom so that mi =

i · m1. In Eq. (2.49), if mi is replaced by di, a size-moment is obtained, and if mi is

replaced by i, a monomer-moment is obtained. A continuous version of Eq. (2.49) is

Mr =
∫ ∞

0
mrf(m)dm, (2.50)

where f(m) is the analog of ni and is a number density proper, having units of number

per cubic meter per kilogram.

The moment equations are derived by applying Eq. (2.49) to Eq. (2.48):

∂Mr

∂t
+
∂vkMr

∂xk
= −∂MrVk

∂xk
+ Sr. (2.51)

Here, the velocity and diffusion velocity are assumed independent of particle size, which

is true of small soot particles transported by convection and thermophoresis. Evaluation

of the moment sources Nr, Gr, and Cr is the primary challenge in the method. As shown

below, the moment equations are exact but contain unclosed terms, whose computation

requires a knowledge of the size distribution. Since the size distribution is generally

unknown, models or approximations are needed to express the terms as functions of the

known, transported moments.

2.5.1 Nucleation

Nucleation occurs as the result of gas phase reactions. In soot formation, there is no

distinct mass at which gaseous molecules grow to become soot. Generally, a representative

nucleation rate is written with an assumed minimum particle size. Here, it assumed that

particles are nucleated with acetylene to produce a particle with Cmin carbon atoms,

where Cmin might be 100. Other nucleation species could be used, such as pyrene. Here

is the reaction used for example:

C2H2 → 2C(s) +H2. (2.52)

The nucleation rate in Eq. (2.48) is given by
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Ni = Snucδ(mi −mmin), (2.53)

where Snuc has units of number per cubic meter per second, mmin = m1 ∗ Cmin, and

δ(mi − mmin) is zero except where mi = mmin; that is, nucleation is zero for all sizes

except the smallest. Snuc can be written for the above nucleation reaction, Eq. (2.52), as

Snuc =
2NaRnuc

Cmin
, (2.54)

where Na is the Avogadro number, the factor 2 is a molar conversion, and Rnuc is the

reaction rate constant with units of kilomole per cubic meter per second.

Applying the moment definition Eq. (2.49) to the nucleation portion of the source

term Eq. (2.53) of Eq. (2.48) yields

∑
i

mr
iNi = mr

minSnuc, (2.55)

Nr = mr
minSnuc. (2.56)

This result can easily be extended to more complex nucleation steps involving, possibly

many, nucleation species.

2.5.2 Growth

Particle growth arises from the rate at which gaseous species react with the ideally

solid particles to form larger particles. A common growth reaction written with acetylene

as the growth species is given by

C2H2 + nC(s) → (n+ 2)C(s) +H2. (2.57)

An oxidation reaction in terms of oxygen is given by

nC(s) +
1
2
O2 → (n− 1)C(s) + CO. (2.58)

In these equations, n just refers to soot with n carbons. Particle sizes are assumed to

be spaced by single carbon atoms, so the net growth rate of a given size i is the rate at
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which carbon atoms are added to particles of size i− 1 , minus the rate at which carbon

atoms are added to particles of size i. The rate of growth is assumed to be proportional

to the surface area of the particle and is given by

Gi =
ks

m1
(ni−1Si−1 − niSi), (2.59)

with terms having the following units:

G (=)
particles

m3s
, (2.60)

ks (=)
kg

m2s
, (2.61)

m1 (=)
kg

carbon atom
, (2.62)

n (=)
particles

m3
, (2.63)

S (=)
m2

particle
. (2.64)

Particles are assumed spherical and the surface area of a particle is given by

Si = πd2
i = π

[(
6vi

π

)1/3
]2

= π

(
6
ρsπ

)2/3

m
2/3
i , (2.65)

where vi is particle volume, and ρs is the particle density. Define γ as

γ =
ks

m1
π

(
6
ρsπ

)2/3

, (2.66)

in Eq. (2.59) to give

Gi = γ(ni−1m
2/3
i−1 − nim

2/3
i ). (2.67)

Apply Eq. (2.49) to Eq. (2.48), considering just the growth term, as was done for the

nucleation term to yield

Gr = γ
∑

i

mr
ini−1m

2/3
i−1 − γ

∑
i

mr
inim

2/3
i . (2.68)
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The second term is just γMr+2/3 and is denoted by (T ) below. At this point it is easier

to split the masses as mi = im1:

Gr = γm
r+2/3
1

∑
i

ni−1i
r(i− 1)2/3 − (T ). (2.69)

Variables are changed using

u = i− 1, (2.70)

i = u+ 1. (2.71)

Hence, Eq. (2.69) becomes

Gr = γm
r+2/3
1

∑
u

(u+ 1)ru2/3nu − (T ). (2.72)

Now use the binomial expansion defined as (with generic notation):

(x+ a)n =
n∑

k=0

(
n

k

)
xkan−k, (2.73)(

n

k

)
=

n!
k!(n− k)!

, (2.74)

so that

(u+ 1)r =
r∑

k=0

(
r

k

)
uk. (2.75)

Inserting this expression into Eq. (2.72) yields

Gr = γm
r+2/3
1

∑
u

r∑
k=0

(
r

k

)
uk+2/3nu − (T ), (2.76)

= γm
r+2/3
1

r∑
k=0

(
r

k

)∑
u

uk+2/3nu − (T ), (2.77)

= γm
r+2/3
1

r∑
k=0

(
r

k

)
Mk+2/3m

−k−2/3
1 − (T ), (2.78)
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= γ

r−1∑
k=0

(
r

k

)
Mk+2/3m

r−k
1 . (2.79)

In the second step, the definition of the moment is used (where u has units of monomer;

multiply and divide by m
k+2/3
1 with m

−k−2/3
1 left over). In the third step, (T) cancels

with the last term in the sum. The continuous version was derived as well and gives the

same result if only the last term in the summation is kept. Here, this assumption is made

since the particle size distribution is practically continuous (a 30 nm particle has about

one million carbons), and the moment growth term is given by

Gr = π

(
6
ρsπ

)2/3

ksrMr−1/3. (2.80)

The fractional moment, Mr−1/3, appears in the equation. This moment must be written

in terms of the other (integer) moments to obtain a closed-form solution.

2.5.3 Coagulation

Soot particles are small compared to the mean free path of the gas, so the particle

interactions are assumed to occur in the free molecular regime. The coagulation rate of

spherical particles in this regime is given by

Ci =
1
2

i−1∑
j=1

βj,i−jnjni−j − ni

∞∑
j=1

βi,jnj . (2.81)

The first term is a source of particles of size i from collisions among smaller particles,

and the second term is a sink of particles of size i from collisions with particles of size

i and all other sizes. The 1
2 factor in the first term corrects for double counting. For

example, particle size 8 is formed from sizes 5 and 3, but the summation gives β3,5n3n5

for j = 3, but also β5,3n5n3 for j = 5. Multiplying by half counts just one of the terms.

The coagulation rate is proportional to the concentrations of the colliding particles and

a frequency factor, β, which is given by

βi,j = ε

(
6kbT

ρs

)1/2( 3
4πρs

)1/6( 1
mi

+
1
mj

)1/2

(m1/3
i +m

1/3
j )2 (2.82)

= Kf ·
(

1
mi

+
1
mj

)1/2

(m1/3
i +m

1/3
j )2. (2.83)
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Here, ε is an agglomeration rate constant in the range of 3-9, kb is the Boltzmann

constant, and Kf is a grouping of terms. The following approximation is applied in this

equation and relaxed later on

(
1
mi

+
1
mj

)1/2

= b ·

(
1

m
1/2
i

+
1

m
1/2
j

)
, (2.84)

where b is a constant. This approach was used by Pratsinis [105] and greatly simplifies the

calculation of the moments. The factor b is bounded between 1/
√

2 and 1 (or 0.707 and

1). The ratio approaches unity when the colliding particles have widely different sizes and

approaches 1/
√

2 when the particles are the same size. Since particle size distributions are

often approximately lognormal, the size range varies widely (also, particle collisions space

particles geometrically), so we may expect to use b ≈ 1 and obtain reasonable results.

If b is taken as the average of its bounds, at worst a 15% error results. The moment

derivation is simplified by using the continuous particle size distribution. The equation

for β is the same, but particle masses are not discrete. The corresponding expression for

Eq. (2.81) is

C(m) =
1
2

∫ m

0
β(µ,m− µ)f(µ)f(m− µ)dµ−

∫ ∞

0
β(µ,m)f(µ)f(m)dµ. (2.85)

Here, µ and m are the masses of two particles.

Applying Eq. (2.50) to this equation to obtain the moment source is straightforward

but tedious (the final result is given in Eqs. (2.105)-(2.110)):

Cr =
1
2

∫ ∞

0
mr

(∫ m

0
β(m− µ, µ)f(m− µ)f(µ)dµ

)
dm (2.86)

−
∫ ∞

0
mr

∫ ∞

0
β(m,µ)f(m)f(µ)dµdm.

With the first term, the double integral amounts to finding the volume above an area in

the µ, m plane. If µ is the y-axis and m is the x-axis, the region is below the µ = m line.

The inner integration above marches vertically along lines of constant m, and the outer
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integration increments these lines towards m → ∞. The integration bounds on the first

term are inverted to cover the same region:

Cr =
1
2

∫ ∞

0

(∫ ∞

µ
mrβ(m− µ, µ)f(m− µ)dm

)
f(µ)dµ− (T ). (2.87)

Here, the inner integral marches along horizontal lines of constant µ from µ = m towards

infinity, whereas the outer integral moves these lines from µ = 0 towards ∞. These two

cases are illustrated in Fig. 2.13 on the right and left, respectively. Changing variables

on the inner integral in Eq. (2.87), and the corresponding integration limits gives

u = m− µ, (2.88)

du = dm, (2.89)

m = µ→ u = 0, (2.90)

m = ∞→ u = ∞− µ = ∞, (2.91)

Cr =
1
2

∫ ∞

0

(∫ ∞

0
(u+ µ)rβ(u, µ)f(u)du)

)
f(µ)dµ− (T ), (2.92)

=
1
2

∫ ∞

0

(∫ ∞

0

r∑
k=0

(
r

k

)
ukµr−kβ(u, µ)f(u)du)

)
f(µ)dµ− (T ). (2.93)

The last step uses the binomial expansion, Eq. (2.73). The variable u is notational and

can be replaced by m. Rearranging the expression for Cr, and bringing (T) back in gives

µ

m

µ

m

Figure 2.13. Schematic illustrating integration bounds.
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Cr =
1
2

∫ ∞

0

∫ ∞

0
f(m)f(µ)β(m,µ)

(
r∑

k=0

(
r

k

)
µr−kmk

)
(2.94)

− 2f(m)f(µ)mrβ(m,µ)dmdµ,

=
1
2

∫ ∞

0

∫ ∞

0
f(m)f(µ)β(m,µ)

[
−2mr +

r∑
k=0

(
r

k

)
mkµr−k

]
dmdµ, (2.95)

=
∫ ∞

0

∫ ∞

0
f(m)f(µ)β(m,µ)

[
−mr +

1
2

r∑
k=0

(
r

k

)
mkµr−k

]
dmdµ. (2.96)

The term in brackets in this last equation is expanded below for the first six moments

r = 0 to r = 5.

r = 0 :
[
−1

2

]
, (2.97)

r = 1 :
[
−m+

1
2
µ+

1
2
m

]
, (2.98)

r = 2 :
[
−m2 +

1
2
µ2 +mµ+

1
2
m2

]
, (2.99)

r = 3 :
[
−m3 +

1
2
µ3 +

3
2
mµ2 +

3
2
m2µ+

1
2
m3

]
, (2.100)

r = 4 :
[
−m4 +

1
2
µ4 + 2mµ3 + 3m2µ2 + 2m3µ+

1
2
m4

]
, (2.101)

r = 5 :
[
−m5 +

1
2
µ5 +

5
2
mµ4 + 5m2µ3 + 5m3µ2 +

5
2
m4µ+

1
2
m5

]
. (2.102)

The coefficients of these terms follow Pascal’s triangle. To compute Cr, the approximate

expression for β is expanded to

β(m,µ) = Kf · b · (m1/6 + 2m−1/6µ1/3 +m−1/2µ2/3 (2.103)

+m2/3µ−1/2 + 2m1/3µ−1/6 + µ1/6),

and inserted, along with the expanded terms in brackets, into Eq. (2.96). By inspection

one can see that the result will be a sum of products of fractional moments. The symmetry

of the expression for β and the integration in Eq. (2.96) with respect to m and µ allow

substantial simplifications in the calculation. For example, for r = 5, the first, second,

and last terms in brackets in Eq. (2.102) cancel, while the third and sixth terms add

together, along with the fourth and fifth terms. The result is



61

C5 = 10
∫ ∞

0

∫ ∞

0
m2µ3f(m)f(µ)β(m,µ)dmdµ (2.104)

+ 5
∫ ∞

0

∫ ∞

0
mµ4f(m)f(µ)β(m,µ)dmdµ.

Expanding β and performing the integration for all r listed gives

C0 = −Kfb(M0M1/6 + 2M1/3M−1/6 +M2/3M−1/2), (2.105)

C1 = 0, (2.106)

C2 = 2Kfb(M1M7/6 + 2M4/3M5/6 +M5/3M1/2), (2.107)

C3 = 3Kfb(M1M13/6 + 2M4/3M11/6 +M5/3M3/2 (2.108)

+M1/2M8/3 + 2M5/6M7/3 +M7/6M2),

C4 = 4Kfb(M1M19/6 + 2M17/6M4/3 +M5/2M5/3 (2.109)

+M11/3M1/2 +M10/3M5/6 +M3M7/6)

+ 3Kfb(2M2M13/6 + 4M11/6M7/3 + 2 ∗M3/2M8/3),

C5 = 10Kfb(M13/6M3 + 2M11/6M10/3 +M3/2M11/3+ (2.110)

+M8/3M5/2 + 2M7/3M17/6 +M2M19/6)

+ 5Kfb(M7/6M4 + 2M5/6M13/3 +M1/2M14/3

+M5/3M7/2 + 2M4/3M23/6 +M1M25/6).

The sum of the fractions on each term for a given Cr should be the same. C1 is zero

because this moment is physically the mass of soot per unit volume, which is unchanged

by coagulation.

2.5.4 Closure Approaches

The fractional moments that have appeared in the growth and coagulation terms must

be written in terms of the integer moments in order to use the method of moments. This

presents a closure problem and there are many ways to obtain closure. These include

• interpolation and extrapolation between whole moments [106],

• assumed-shape size distribution where parameters defining the size distribution

(such as the mean and standard deviation) are written in terms of the fractional

moments [105],
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• quadrature closure where the integrals defining the moments are computed using a

form of quadrature where the weighting function and evaluation points are written

in terms of the moments [107],

• approximations usually involving further simplifications of the growth and nucle-

ation rates (e.g., assuming a size independent growth rate) [108].

Here, the goal is not to do an exhaustive search and comparison of the various methods

but to find some that work and compare those. The focus here is on assumed-shape size

distributions relevant for soot formation, as well as quadrature closure (QMOM). The

later is probably the most general of all closure methods, but it requires an even number

of moments.

2.5.4.1 Monodispersed Size Distribution

The first two mass-moments of the particle size distribution are the particle number

density (n = M0) and the soot mass per unit volume (ρYs = M1). These two quantities

are sufficient to define a mean particle size:

d =
(

6M1

πρsM0

)1/3

. (2.111)

The monodispersed assumption in terms of two moments is a popular starting point for

theoretically-based soot models because it is simple and allows basing reaction rates on a

mean particle size (e.g., surface area). Models are often not written explicitly in terms of

the first two moments as moments but consider the number density and soot mass fraction,

or volume fraction (fv = ρYs/ρs). The previously derived expressions for Nr, Gr, and

Cr are valid for the monodispersed assumption. It turns out that fractional moments

computed by logarithmic interpolation between the first two moments are equivalent to

using the mean particle size defined by those two moments. That is, using the known

size distribution n(m) = M0 · δ(m−mm), where mm is the mean particle mass M1/M0.

This is illustrated simply below.

The growth rate in Eq. (2.80) for r = 0 is 0, and for r = 1 is

G1 = π

(
6
ρsπ

)2/3

ksM2/3. (2.112)
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Logarithmic interpolation for a fractional moment Mk is defined as

Mk = Ma

(
Mb

Ma

)(k−a)/(b−a)

, (2.113)

where a and b are integers, and k is between a and b for interpolation, or outside the

range of a and b for extrapolation. For a = 0, b = 1, and k = 2/3,

M2/3 = M0

(
M1

M0

)2/3

. (2.114)

Using this expression in Eq. (2.112), and using Eq. (2.111) with Ap = πd2 results in

G1 = M0 ·Ap · ks. (2.115)

The growth rate is the number of particles per unit volume, times the mean surface area

per particle, times the rate per area, which makes sense for a monodisperse distribution.

This is the expression used in the Leung and Lindstedt model [5], except that M0Ap is

replaced with (M0Ap)1/2.

The same thing can be done for the coagulation rate C0 in Eq. (2.105), using

logarithmic interpolation for the fractional moments. The result is the same if the mean

particle size is used in the rate expression Eq. (2.81). For the monodisperse distribution,

the factor b in the approximation for β is identically 1/
√

2.

Here are the rate expressions for the monodisperse distribution:

N0 = Snuc, (2.116)

N1 = mminSnuc, (2.117)

G0 = 0, (2.118)

G1 = π

(
6M1

πρsM0

)2/3

M0ks, (2.119)

C0 = −4Kf · b ·M
11/6
0 M

1/6
1 , (2.120)

C1 = 0. (2.121)
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2.5.4.2 Lognormal Distribution

Aerosol particle size distributions undergoing free molecular collisions are known to be

well approximated by the lognormal size distribution. This is also a good approximation

for soot including nucleation and surface growth. If a lognormal size distribution is

assumed, all fractional moments can be written explicitly in terms of the parameters of

the lognormal distribution. The distribution in continuous form, with diameter as the

size variable is

f(log d) =
dF (log d)
d log d

=
M0

σ
√

2π
exp

(
− log2(d/d̄)

2σ2

)
. (2.122)

This is the classic normal distribution multiplied by M0, where log d is the independent

variable, f is the size distribution and F is the cumulative size distribution. Notation

is important here and σ is the standard deviation of the distribution with log d as the

independent variable. Sometimes one sees σ replaced with log σ, and in both cases σ is

called the standard deviation, which can cause confusion. In Eq. (2.122), d can be used

as the independent variable using d log d = 1
ddd (where d log d is the differential of log d,

and dd is the differential of d):

f(d) =
dF (d)
dd

=
M0

σ
√

2π
1
d

exp
(
− log2(d/d̄)

2σ2

)
. (2.123)

Using m = π
6d

3ρs and dd = 2
πρsd2dm and d logm = 1

mdm yields

f(m) =
dF (m)
dm

=
M0

3σ
√

2π
1
m

exp
(
− log2(m/m̄)

18σ2

)
, (2.124)

f(logm) =
dF (logm)
d logm

=
M0

3σ
√

2π
exp

(
− log2(m/m̄)

18σ2

)
. (2.125)

This last expression is like Eq. (2.122), but with the 1/3 factor. The quantity 3σ here

is the standard deviation of f(logm) with logm as the independent variable. If 3σ is

replaced with σ, a lognormal distribution in logm like log d in Eq. (2.122) results, but

the form given is more common (confusing) and will be used. At any rate, σ is written

as it appears in Eq. (2.124) in terms of moments. The actual form only matters insofar

as the distribution is reconstructed from the moments.
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The moments of the lognormal distribution are found by multiplying Eq. (2.124) by

mk and integrating over all m as in Eq. (2.50):

Mk =
M0

3
√

2πσ

∫ ∞

0
mk−1 exp

(
− log2 (m/m̄)

18σ2

)
dm. (2.126)

Changing the integration variable to logm, dm = md logm, yields

Mk =
M0

3
√

2πσ

∫ ∞

−∞
mk exp

(
− log2 (m/m̄)

18σ2

)
d logm. (2.127)

Next, change variables as

z =
(

log (m/m̄)
3
√

2σ

)
, (2.128)

d logm = 3
√

2σdz, (2.129)

Mk =
M0

3
√

2πσ

∫ ∞

−∞
3
√

2σmk exp(−z2)dz, (2.130)

=
M0

3
√

2πσ

∫ ∞

−∞
3
√

2σ
(m
m̄

)k
m̄k exp(−z2)dz. (2.131)

Insert (m/m̄)k = exp(3
√

2σzk) from Eq. (2.128) and let α = 3
√

2kσ:

Mk = M0
m̄√
π

∫ ∞

−∞
exp(−z2 + αz)dz, (2.132)

= M0
m̄√
π

∫ ∞

−∞
exp

[
−
(
z − α

2

)2
+
(α

2

)2
]
dz, (2.133)

= M0
m̄√
π

exp
(
α2

4

)∫ ∞

−∞
exp

[
−
(
z − α

2

)2
]
dz, (2.134)

= M0
m̄√
π

exp
(
α2

4

)∫ ∞

−∞
exp[−p2]dp, (2.135)

Mk = M0m̄
k exp

(
9
2
k2σ2

)
. (2.136)

The first step of this equation consists of completing the square, moving it outside the

integral in step 2, changing the integration variable in step 3, and simplifying the result,

where the final integral equals
√
π.

Equation (2.136) gives any moment in terms of m̄ and σ. Mk is needed terms of M0,

M1, and M2, which is done as follows:
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M1 = M0m̄ exp
(

9
2
σ2

)
, (2.137)

m̄ =
M1

M0
exp

(
−9

2
σ2

)
, (2.138)

M0m̄

M1
= exp

(
−9

2
σ2

)
, (2.139)

M2 = M0m̄
2 exp

(
4

9
2
σ2

)
, (2.140)

M2 = M0m̄
2

(
exp

(
9
2
σ2

))4

, (2.141)(
M2

M0m̄2

)1/4

= exp
(

9
2
σ2

)
. (2.142)

Equate Eq. (2.139) and the inverse of Eq. (2.142) and solve for m̄:

m̄ =
M2

1

M
3/2
0 M

1/2
2

. (2.143)

Now insert this expression in Eq. (2.139) and solve for σ:

σ2 =
1
9

log
(
M0M2

M2
1

)
. (2.144)

Equations (2.143) and (2.144) are used in Eq. (2.136) to yield

Mk = M
1− 3

2
k+ 1

2
k2

0 M2k−k2

1 M
1
2
k2− 1

2
k

2 . (2.145)

This equation can be used to find all required fractional moments in Nr, Gr, and Cr.

Here are the rate expressions for the three-moment, lognormal closure:

N0 = Snuc, (2.146)

N1 = mminSnuc, (2.147)

N2 = m2
minSnuc, (2.148)

G0 = 0, (2.149)

G1 = π

(
6
ρsπ

)2/3

ksM2/3, (2.150)
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G2 = π

(
6
ρsπ

)2/3

· 2 · ksM5/3, (2.151)

C0 = −Kfb(M0M1/6 + 2M1/3M−1/6 +M2/3M−1/2), (2.152)

C1 = 0, (2.153)

C2 = 2Kfb(M1M7/6 + 2M4/3M5/6 +M5/3M1/2). (2.154)

2.5.4.3 Lognormal Plus Power Law Distribution

The same approach that was taken in deriving the lognormal closure can be applied

to other distributions, possibly with more parameters, allowing a more accurate PSD

representation. The experiments of Zheng et al. [109] and others have shown that soot

particle size distributions that include the combined effects of nucleation, growth, and

coagulation can be represented by the sum of a power law function and a lognormal

distribution. This distribution is given by

f(logm) =
dF (logm)
d logm

= am−b +
c√
2πσ

exp
(
− log2(m/m̄)

2σ2

)
. (2.155)

The five parameters (a, b, c, m̄, σ) describe the distribution. The general expression for

an arbitrary moment can be easily derived, but it is in terms of the parameters of the

size distribution, and an analytic solution for these parameters in terms of the first five

moments was not found. Hence, to use the method, a nonlinear solve would be required

in order to compute the parameters from the moments in order to close the fractional

moments required for closure of the source terms of the first five whole moments. This

does not seem worth the effort when there are other methods that make no assumptions

about the shape of the size distribution, such as interpolative closure, and quadrature.

Interpolative closure is not described here. Quadrature closure is described next.

2.5.4.4 Quadrature Method of Moments

It was previously observed that in order to close the moment source equations, frac-

tional moments are required, or, in the case of the general coagulation term, more

general integrals over the unknown particle size distribution function are required. This

integration can be carried out using numerical quadrature:
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∫ b

a
W (x)f(x)dx ≈

N∑
j=1

wjf(xj), (2.156)

where f(x) is a general function here and W (x) is a weighting function. On the RHS

of the equation, wj are applied weights, and xj are evaluation points, or abscissas.

The integration is approximated by the sum of products of weights and the function

evaluated at abscissas. Generally, more points in the sum give higher accuracy. The book

Numerical Recopies [110] gives a very good description of quadrature as summarized in

this section. For a given weight function, the weights and abscissas can be chosen so that

the quadrature in Eq. (2.156) is exact for f(x) a polynomial of degree 2N−1 or less. The

abscissas are chosen to be the roots of the order N−1 orthogonal polynomial (orthogonal

with respect to the weight function). The weights can be found in several ways, such as

applying Eq. (2.156) and the definition of orthogonality to the lower-order orthogonal

polynomials. To integrate a general function, the idea is to split it into the product of

a weight function and a polynomial function. The weights and abscissas are then found

for the weight function using orthogonal polynomials, and Eq. (2.156) is applied. The

function f(x) does not have to be a polynomial, but this is ideal. If W (x) is taken equal

to unity and the integration interval scaled to −1 < x < 1, then the quadrature is the

classic Gauss-Legendre, and the weights and abscissas are known and can be looked up

in a table. Many other weight functions are also used and tabulated.

In applying quadrature to our case of integration over the unknown particle size

distribution, the weight function is taken as the particle size distribution and the weights

and abscissas are computed in terms of 2N moments of the distribution. Hence, for a

two-point quadrature, four moments are required. For example,

∫ ∞

0
g(m)f(m)dm ≈

N∑
i=1

wig(xi), (2.157)

where f(m) is our particle size distribution. The weights wi and abscissas xi could be

computed using the definition of the moments and the approximate quadrature, which,

for N = 2 points (four moments), gives

M0 = w1 + w2, (2.158)

M1 = x1w1 + x2w2, (2.159)
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M2 = x2
1w1 + x2

2w2, (2.160)

M3 = x3
1w1 + x3

2w2. (2.161)

This yields four equations in four unknowns. Once wi and xi are computed, any

integration over the unknown f(m) can be approximated. The above method is not

good numerically as the equation system is ill conditioned, and other algorithms are

used. In Numerical Recipes, algorithms by Sack and Donovan and others by Wheeler are

advocated (see references in [110]). The product difference algorithm of Gordon [111] and

also described by McGraw [107] was implemented here with some slight modifications for

moment scaling. The inputs to the algorithm are simply the moments, and the outputs

are weights and abscissas that are used directly to compute all fractional moments, or

other integrations for closure of the moment source terms. Appendix B contains a Matlab

program for the product difference algorithm.

2.5.4.5 Verification of Quadrature Implementation

The product difference algorithm implementation is tested simply by feeding in mo-

ments and making sure that the resulting abscissas and weights give back the moments

under the quadrature definition.

As a validation of the quadrature approach, the first three moments of the particle

size distribution are specified through the mean particle size, the standard deviation,

and the total number density. The fractional moments of the lognormal size distribution

are then computed using the exact analytic expressions Eq. (2.145), and compared to

the quadrature approximations. For this analysis, particle size-moments (diameter), not

mass-moments, were employed. Results are shown in Fig. 2.14. The six plots correspond

to six different fractional moments that approximately span the range appearing in the

moment sources up to the sixth moment. On each plot the curves represent one-,

two-, three-, and four-point quadratures, requiring two, four, six, and eight moments,

respectively. The results are not dependent upon either the total number density or the

mean particle size, but only on the standard deviation of the distribution. As the standard

deviation increases, the relative error in the moment approximation increases. The error

is substantially smaller when more quadrature points are used. The errors also increase

as the fractional moments increase, except for the negative moment k = −1/2 whose

error is higher than k = 1/2. However three moments are sufficient to capture a truly

lognormal distribution, and the fractional moments higher than about k = 3/2 would
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Figure 2.14. Validation of quadrature approximation to lognormal fractional moments.
Relative error shown as a function of the standard deviation squared of the lognormal
distribution for one- to four-point quadratures. σ2 = 0.2 is shown to be a practical upper
bound for real systems.
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not be needed; or, in other words, the errors at higher fractional moments correspond

to the use of a higher number of moments, for which the increases in accuracy are less

significant; or, loosely, the errors at higher fractional moments multiply higher order (less

significant) terms in the particle size representation.

The errors are actually quite large for high σ2, especially for the one- and two-point

quadratures. One would hope that the errors would be low enough to give confidence in

the use of the model. To this end, it is interesting to get a feel for just how large a σ

occurs in realistic situations. Particle distributions subject to coagulation are known to

develop so-called self-preserving size distributions. That is, the shape and width of the

normalized distribution become constant in time during the evolution of the distribution

and simply shift as a whole towards higher particle sizes. This is illustrated in Fig. 2.15,

which shows results of a simple sectional model that was developed to test the width of

the distribution. Section profiles are treated as delta functions, with interpolation for

collisions between bins. Plot (a) shows the raw data on a logscale and shows that the

number of particles decreases due to coagulation as the mean size grows. Plot (b) is on a

linear scale with the data normalized to show the self-preserving form of the distribution.

The developed distribution in Fig. 2.15 at 5 s is well approximated as lognormal with

a mean volume of 5.3×10−25 m3 and a σ of 0.42. As noted above, σ is sometimes replaced

with log σl, and the value σl reported. In this notation, the above value is σl = 1.52, which

is very close to the value reported by others. Vemury and Pratsinis found a value of 1.46

[112]. Zhao et al. [109] measured soot distributions in premixed flames including the

effects of nucleation and growth and found a values up to 1.6. In Fig. 2.14, a practical

upper bound on σ2 is 0.2 for which the two or more point quadratures give less than 1%

error for all fractional moments shown except k = 9/2. It is concluded that quadrature

is an accurate method for moment closure.

2.5.5 Implementation and Results

The method of moments was implemented in a Fortran 90 module for two, three,

four, or six moments. Extension to eight or more moments is straightforward. For

three moments, a lognormal closure is used, and for all moments except three, the

approximate coagulation expression is optional. In addition, the module is coupled to

the DVODE ODE integrator in both constant (gas) property batch (PFR) and perfectly

stirred reactor (PSR) configurations. Results for these configurations are shown below.
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Figure 2.15. Sectional coagulation model results. The initial condition is 1×1017

particles in the first bin. Bin sizes are spaced geometrically by a factor of 2, and the
first bin is 1×10−27 m3, which corresponds to a spherical particle with 100 carbons and
a density of 1850 kg/m3. Plot (a) shows that the total number of particles decreases
as the size grows via coagulation. Plot (b) is normalized and shows the self-preserving
distribution that develops in time.
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The soot model implemented is from Leung and Lindstedt [5] for nucleation and oxidation

and Lindstedt [113] for soot growth. These mechanisms are examples and implementation

of other reaction schemes is straightforward. The growth, oxidation, and nucleation rates

corresponding to Eqs. (2.57)-(2.58) are

ks,grw = 7.5× 102 · exp(−12100/T ) · [C2H2] · 2WCs, (2.162)

ks,oxid = 1× 104
√
T · exp(−19680/T ) · [O2] · 2WCs, (2.163)

Rnuc = 1× 104 · exp(−21100/T ) · [C2H2], (2.164)

where WCs is the molecular weight of carbon, and [C2H2] and [O2] are concentrations

in kmol/m3. The rate units are kilogram per square meter for growth and oxidation and

kilomole per cubic meter per second for nucleation.

Unless otherwise noted, the following parameters are used in the calculations. The gas

temperature is 1500 K, and the pressure is 1 atm. Acetylene is the nucleation and growth

species, with an assumed constant concentration of 0.000426 kmol/m3. The oxygen

concentration is fixed at 1.03×10−6 kmol/m3. In the following results, oxidation was

not allowed, but its effect is very small for the given oxygen concentration. The gas

parameters chosen correspond approximately to mean values at the soot peak in the

mixture fraction coordinate for nonpremixed ethylene flames computed using DNS.

2.5.5.1 Moment Scaling

In implementing the method of moments, the scaling of the moments is important.

If mass-moments are used, the moments have widely varying orders of magnitude since

each successive moment involves the particle mass to successive powers, and the particle

mass is small. Hence the moments must be scaled in order to avoid roundoff error

and machine overflow or underflow. For example, with mass-moments in kg, m3, the

first three moments are O(1017), O(10−3), and O(10−23). That is, there are about 20

decimals between the significant range of each moment, but only about 16 decimals of

double precision. A remedy is to replace the mass-moments with scaled moments:

Mr =
∑

i

mr
ini, (2.165)

µr =
∑

i

irni =
Mr

mr
1

, (2.166)
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ηr =
∑

i

pr
ini =

µr

αr
=

Mr

(m1α)r
, (2.167)

where µr is a monomer-moment, and η is a scaled monomer-moment or just a scaled

mass-moment. The parameter α is a scaling factor.

Figure 2.16 compares time integrated profiles to 20 ms for six moments. These results

were computed using QMOM with the general expression for coagulation. Three plots

with three separate values of α are shown. In each case, M0 is the curve with the least

variation, and the other moments are spaced in order. The moment scaling results in a

crossover of the curves, whose position shifts to longer times as α increases. This results

in moments being widely spaced in some regions (about 16 orders apart) and nearly the

same magnitude in others. The product difference algorithm was slightly modified by

scaling by M0 and M1, and no significant numerical errors up to six moments have been

observed. The fact that the crossover point changes in time suggests that, if scaling

is a problem, the parameter α could be modified as needed to minimize the span of

the moments. Also, higher moments show a lower rate of growth than lower moments,

consistent with the fast nucleation of soot and the relatively slow growth and coagulation

that tends to spread the size distribution in the internal particle coordinate (i.e., particle

mass).

2.5.5.2 Comparison of the Number of Moments

Figure 2.17 shows a comparison of two, three, four, and six moments in a batch reactor.

In all cases, the above coagulation approximation is used with b = 0.73. The integration is

carried out for 20 ms. The results are in excellent agreement to 20 ms for three, four, and

six moments, while the two-moment method is reasonable, but off by about 33% at 20 ms.

As the number of moments increases, the differences between the profiles are lessened.

There is no visible difference between the four- and six-moment curves and very slight

differences between the three-, four-, and six-moment results for M1, which is usually the

quantity of most interest. At longer times, the M1 curves continue to diverge with M1

a little less than a factor of 2 higher for two moments than for four moments (M1 = 1.2

kg/m3 for four moments) at 100 ms. At the same time, M0 has declined and levelled to

approximately 1.2×1017 #/m3 with 18% difference between the two- and four-moment

curves. In this calculation, with a fixed gas phase, the results become irrelevant once

the soot mass fraction begins to approach that of the original carbon in the system, and
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Figure 2.16. Comparison of scaling parameters for a six-moment method. In each case,
M0 is the curve with the least variation and higher moments are spaced in order.
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Figure 2.17. Comparison of number of moments in a batch reactor.

consideration of early times is more reasonable.

2.5.5.3 Effect of the Approximate Coagulation Source

The approximation for the coagulation source introduced in Eq. (2.84) was used

for closure of the lognormal size distribution. As shown in the previous section, three

moments are sufficient for approximating the soot distribution, and since transporting

three moments is computationally efficient we would like to use the three-moment version

whenever possible. Figure 2.18 shows a comparison of M0 and M1 using four moments

with values of b spanning the bounds 1√
2
≤ b ≤ 1. There is substantial variation in the

results: about 13% in M1 and 16% in M0. The two solid lines are for b = 0.73 and general

coagulation. These two curves are indistinguishable for M1, and the b = 0.73 curve is

slightly lower for M0. These results are encouraging and show that the three-moment

model can be used with confidence with b = 0.73.

This value of b = 0.73 is approximately equal to its mean value over mi and mj (or m

and µ in the continuous form) given the definition, Eq. (2.84). The fact that the optimal b

is close to its lower boundary corresponds to collisions among particles of similar size. The

lower boundary corresponds to collision of equal sized particles, and the upper boundary

corresponds to collision of particles of very different sizes. It should not be expected that

the value of b be strictly a constant since the integration required for Cr is dependent upon

the particle size distribution and the value of r. Pratsinis [105] used a lognormal closure
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Figure 2.18. Comparison of the four-moment model with values of b=0.7, 0.8, 0.9, 1.0
as dashed lines. The dash-dot lines are the general coagulation model, and the solid lines
are b = 0.73, which are indistinguishable for M1. For M0, the b = 0.73 line is lower.

with the same approximation on collision used here. He correlated values of b for each

moment source as a function of the standard deviation of the particle size distribution.

This has been repeated in the present formulation by numerical integration. The results

are essentially the same as in [105] and are not repeated. However, it appears that good

agreement can be achieved with the constant value given above.

2.5.5.4 Sensitivity to Source Rates

A brief evaluation of the sensitivity of the first and second moments to the rates of

nucleation, coagulation, and growth is shown in Fig. 2.19. A set of four simulations

were performed with four moments. The four cases correspond to a base case with

the parameters used previously, followed by three cases in which each of the rates of

nucleation, coagulation, and growth are increased individually by a factor of 2. These

increases give rise to substantial differences in both of the first two moments. The

increased nucleation rate results in both a higher overall number density (M0) as expected

but also increases the total soot mass per volume (M1) since there are more particles for

surface growth to act upon. Conversely, increasing the coagulation rate results in fewer

particles and a lower overall soot mass. An increase in the soot growth rate results in

an increase in the total soot mass in the system, as expected, but the number density

is decreased for this case due to higher coagulation rates for larger particle sizes. This
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Figure 2.19. Sensitivity of M0 and M1 to rates of nucleation, growth, and coagulation
for the four-moment model.

increase in particle size effectively reduces the particle surface area per unit mass and

results in a lower level of growth than would be observed if coagulation rates were

constant. As may be expected, M0, the total particles per volume, is most sensitive to

the nucleation rate, and M1, the mass per volume, is most sensitive to the growth rate,

the latter by a wide margin. The nucleation, growth, and coagulation curves differ from

the base curve for M1 at 20 ms by 43%, 560%, and 28%, respectively, and by 39%, 16%,

and 30%, respectively, for M0 at the same time. If the total soot mass (proportional to

volume fraction) is the most important quantity of interest, the growth rate is important.

2.5.5.5 PSR Tests

To convert the constant gas property batch reactor to a constant gas property PSR,

source and sink terms corresponding to the rate at which soot moments enter and leave the

reactor are added to the reaction and coagulation source terms. The following equation

is solved, assuming no soot mass enters the reactor:

dMr

dt
= Nr +Gr + Cr −

Mr

τ
, (2.168)

where τ is the PSR residence time. As τ increases, the soot levels decrease due to reduced

reaction times available. The PSR equation is written in unsteady form, where there is
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no soot at time zero. However, unlike the batch reactor, the PSR reaches a steady

state where the source terms sum to zero (primarily due to the exit stream) and the

moment profiles reach a steady state. Figure 2.20 shows the unsteady moment profiles

for the four-moment model in a PSR with τ = 5 ms. The characteristic timescale is

not that of the PSR but is dominated by the slower soot growth reactions. In the case

of the number density, there is a fast transient, then a peak where coagulation begins,

followed by a slower descent towards the steady value. Once again, the slower growth

of the higher order moments as the particle size distribution develops is observed. The

characteristic PSR timescale was verified to equal the imposed residence time by turning

off the nucleation rate and observing the rate of decay of the first moment M0 from an

imposed initial condition.

Figure 2.21 shows the steady values of the first two moments as a function of the PSR

residence time. The base case is shown as well as results with increased source terms, as

in Fig. 2.19. The PSR results appear to be very similar to the PFR results, with the same

sensitivity to the moment source terms. The number density shows a smaller variation

than the soot mass per volume, as is evident in plot (b), where log(M1) is shown. The

M1 curve spans five orders of magnitude.
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Figure 2.20. Normalized moment profiles for the four-moment model in a PSR with a
residence time of 5 ms.
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CHAPTER 3

ONE-DIMENSIONAL SIMULATIONS

A series of four one-dimensional simulations were performed with S3D to complement

the multidimensional runs and to gain insight into the effects of soot diffusion and

radiation on the temperature and soot fields.

3.1 Configuration

The one-dimensional cases correspond directly to the two-dimensional temporal mix-

ing layer simulations presented in Chapter 4. That is, the initial field is a line of sight

in the cross-stream direction through the two-dimensional mixing layer initial field. The

cases are nonpremixed with open (nonreflecting) boundary conditions. The flow config-

uration is simply an unsteady diffusive relaxation of the initial flame, with no imposed

strain or flow. This configuration is in contrast to other popular configurations, such

as the steady one-dimensional opposed jet, steady laminar flamelets, or steady premixed

flames. This particular case is thought to correspond more closely to the unsteady mixing

layer cases. The unsteadiness of the case allows us to observe the soot growth, transport,

and radiative processes without the complications of added convective fields that are

present in two and three dimensions. Because the simulations are one-dimensional, the

computational costs are lower, and longer run times are possible (typically by an order

of magnitude). In addition, the detailed mechanism upon which the reduced mechanism

was based may be applied for direct comparison of the two mechanisms and quantification

of the differences.

Although the present cases are not strained, the flame zone of the mixing layer cases

are not substantially strained either. In the developed region of turbulent jet flames,

strain rates are important in describing the chemical structure of the flames, so these one-

dimensional cases should be applied cautiously and in a qualitative way only. However,

in fires (e.g., pool fires) flow timescales can be much larger compared to flame timescales.

Even turbulent fires may be substantially laminar from the point of view of a flame with
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lengthscales of order millimeters, and timescales of order milliseconds. From this point

of view, examination of one-dimensional unsteady, unstrained diffusion flames may be

quite appropriate, especially considering the level of detail provided in the compressible

formulation with expansion, and detailed chemical and transport effects accounted for.

The four cases are as follows:

1. A baseline case.

2. The baseline case with no radiation.

3. The baseline case with no soot diffusion (thermophoresis or otherwise).

4. The baseline case with the detailed chemical mechanism.

The domain size is 3 cm with 500 grid points giving a grid spacing of 60 µm (which is

sufficient for full resolution of the expanding flame). The average timestep size for the

baseline case is 5.8×10−8 s, requiring 1.5 million steps to reach 86.5 ms. The simulation

time was 6.33 hours on 10, 2000 MHz AMD Opteron processors.

3.1.1 Flame Initialization

The flames in these simulations, and the others presented in subsequent chapters, are

initialized from one-dimensional, steady laminar flamelet solutions. This approach is not

the only one for initiating a flame. Others include overlaying a hot temperature spike

over a stratified fuel-air mixture and allowing auto-ignition to occur. Other possibilities

include the addition of regions of hot combustion products to initiate the reactions. The

steady flamelet approach is useful since there is no initial transient required to ignite the

flame. Also, this approach removes questions regarding unphysical addition of enthalpy,

which is a particular problem in temporal simulations in which the flame regions do not

exit the domain, in contrast to spatially evolving flows.

Figure 1.2 shows a schematic of a one-dimensional, strained opposed jet diffusion

flame. The flamelet model was introduced in Chapter 1. Solutions to the flamelet

equations were computed using a program developed by Sutherland [57]. The program

was modified to allow formation and transport of soot, incorporation of a heat loss

parameter, and calculation of temperature from enthalpy, rather than transport of an

energy equation. Additional modifications, described here, were incorporated for use in

initializing the DNS simulations. The flamelet code solves the unsteady species flamelet



83

equations to steady state using the stiff ODE solver DASSL [114]. Thermodynamic

quantities and reaction rates are computed using Chemkin [115].

In Eq. (1.11), all information linking the physical space variable to the mixture

fraction coordinate is contained in the scalar dissipation rate:

χ = 2Dξ

(
∂ξ

∂y

)2

. (3.1)

Equation (1.11) is an unsteady diffusion, reaction relation that is solved to steady state.

The scalar dissipation rate χ captures both the effects of diffusion and convection. It

is common to specify the scalar dissipation rate profile directly as a function of mixture

fraction. A common relation is

χ(ξ) = χmax exp[−2(erf−1(2ξ − 1))2], (3.2)

where χmax is the value of χ at ξ = 0.5. Here, erf−1 is the inverse error function, not

1/erf . The −1 part of 2ξ − 1 is simply to shift the domain to range from 0 to 1 (instead

of -1/2 to 1/2). χmax is a parameter.

In specifying the initial composition field, a hyperbolic tangent profile for the mixture

fraction in physical space is assumed, and then the corresponding flamelet solution is

derived. Equation (3.2) is not used here. The mixture fraction profile is taken to be

ξ(y) =
1
2

(1 + tanh(σyc)), (3.3)

where yc is the centered physical domain, and σ is a scaling factor that determines the

sharpness of the profile. The corresponding scalar dissipation rate profile is found by

inserting Eq. (3.3) into Eq. (3.1) to give

χ =
Dξ

2
σ2(1− tanh2(σyc))2. (3.4)

Rearranging Eq. (3.3) yields

tanh2(σyc) = (2ξ − 1)2. (3.5)
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Inserting Eq. (3.5) into Eq. (3.4) gives

χ =
Dξ

2
σ2(1− (2ξ − 1)2)2. (3.6)

This is the equation that is used to solve the flamelet profile when Eq. (3.3) is specified

on the physical domain. The diffusivity is assumed to be the thermal diffusivity for

Le = 1, which is a function of composition and temperature. The Dξ(ξ) profile is updated

directly as part of the solution and yields a χ profile that is composition- and temperature-

dependent, and not simply a specified function of mixture fraction.

It is interesting to compare Eq. (3.6) with Eq. (3.2). In Eq. (3.6), assume Dξ is

constant. For a hyperbolic tangent profile, the characteristic width δ is defined as

δ =
∆ξ(

∂ξ
∂y

)
max

=
∆ξ√
χmax

2Dξ

, (3.7)

where Eq. (3.1) has been used. In addition, the first equality in Eq. (3.7) gives δ = 2/σ,

when Eq. (3.3) is applied. Hence, we obtain (with ∆ξ = 1):

σ =

√
2χmax

Dξ
. (3.8)

Applying this expression to Eq. (3.6) gives

χ = χmax(1− (2ξ − 1)2)2, (3.9)

which compares directly with Eq. (3.2). Figure 3.1 compares the two profiles, which are

very close to one another. The advantage of the scalar dissipation rate profile derived

from the tanh profile is that the expression is simpler to compute, and the profile can

more readily be converted from physical space to mixture fraction space. Given the

significant assumptions that went into these profiles (Le = 1, constant diffusivity, etc.)

the difference is not that great. On the other hand, the close agreement implies that the

tanh profile for mixture fraction is a good representation of the error function mixture

fraction solution that was used to derive Eq. (3.2).
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Figure 3.1. Comparison of χ profiles.

Figure 3.2 shows profiles of mixture fraction versus position for values of σ ranging

from 5 to 35 cm in increments of 5 cm. Flamelet profiles were computed for some of the

values of σ and are shown in Fig. 3.3. Profiles of temperature and O2, OH mass fractions

are shown plotted versus mixture fraction on the left side of the figure. Corresponding

plots in physical space are shown on the right. As the dissipation rate χ (or σ) increases,

the profiles become narrower indicating a more highly strained flame. Figure 3.4 shows the

width of the tanh profile and the full width at half maximum (FWHM) of the temperature

to be nearly the same. In the mixture fraction (ξ) coordinate, the peaks in the profiles tend

to occur at the same values of ξ since the location of the flame in ξ space is constant. The

position of the peaks in physical space is a direct consequence of the mixture stretching

in physical space with varying scalar dissipation rate shown in Fig. 3.2. In Fig. 3.3 the

temperature versus position curves coincide at position 0, corresponding to a mixture

fraction of 0.5, which is where the ξ-y curves coincide in Fig. 3.2.

As the flame is strained, the intermediate and product profiles decrease, as does

temperature. This effect is due to the competition between reaction rates and diffusion

rates in ξ space. As the flame is strained, diffusion rates increase, and the chemical

reactions do not proceed to completion as nearly as they do at lower strain. Conversely,

as the dissipation rate increases, the oxygen levels are higher (as are CO mass fractions,
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Figure 3.2. Hyperbolic tangent profiles of mixture fraction for various σ. Curves are
spaced by 5 σ.

which are not shown). In the higher strained flames, significant amounts of oxygen are

able to diffuse unreacted past the reaction zone (indicated by the OH profiles) into very

rich regions. With continuing increases of σ, the flame eventually extinguishes.

The composition and temperature dependence of the diffusivity of the mixture fraction

used in Eq. (3.6) results in profiles of the scalar dissipation rate not centered on ξ = 0.5

as they are in Fig. 3.1. Figure 3.5 shows the thermal diffusivity as a function of mixture

fraction for the σ = 20 cm case. The χ profile results from the product of the diffusivity

and the quadratic functions in Eq. (3.6). The peak in χ is intermediate between that

in Dξ and the quadratic function. If a flamelet profile in physical space is desired at a

scalar dissipation rate based on the usual flamelet formulation (not the tanh version), the

dissipation rates at the stoichiometric mixture fraction should be equated between Eqs.

(3.2) and (3.6) (using Dξ,st) and the result solved for σ. The equation is a rearrangement

of Eq. (3.6):

σ =

√
2 ∗ χst

Dξ,st(1− (2ξst − 1)2)2
. (3.10)

While the overall χ profiles will be different for the two cases, the values at the stoichio-

metric point are the same. The χ profiles between the two approaches are different due
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to the variation of the diffusivity. The χ profiles for the usual and tanh versions can be

written as

χ = χst
g(ξ)
g(ξst)

, (3.11)

χ = χst
h(ξ)
h(ξst)

Dξ

Dξ,st
, (3.12)

respectively. Hence, while χ may be the same at ξst, lower values are obtained for the tanh

version at ξ higher and lower than ξst due to the corresponding decrease in Dξ. Figure

3.6 shows a sample result for a χmax of 800 1/s from Eq. (3.1). The agreement at the

stoichiometric point (ξ = 0.064) is not perfect since, for this run, Dξ,st was computed at

the equilibrium point, not by iteration within the flamelet code. The strong dependence

of the diffusivity on mixture fraction (temperature) highlights the importance of the flame

properties on the flame structure.

3.2 Results

Figure 3.7 shows the temperature, velocity, mixture fraction, and density of the

baseline flame at 10 ms. The pressure is atmospheric, and the fuel and air streams

are undiluted. At this time, the velocity ranges from 20 to -20 cm/s. The velocity peaks
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Figure 3.6. Comparison of χ between the tanh and usual formulations.
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where the density is a minimum, consistent with mass conservation. This position is

also the peak temperature position. The width of all the curves are also consistent. As

shown below, the velocity magnitude profile decreases in time as the mixture fraction

gradient becomes smaller and the rate of diffusion into the flame zone is reduced. The

dip in the velocity profile near 1.5 cm is a commonly observed phenomena in opposed

flame simulations. The expansion of the flame zone causes a net outward velocity which

passes through zero. The dip is due to the superposition of this velocity profile (negative,

through zero, to positive) with the density profile, whose dip tends to lift the otherwise

monotonic velocity profile correspondingly. Hence, it is not really the dip in the velocity

that is interesting; it is the peak in the velocity near 1.5 that is due to the density profile.

Near the flame, the mixture fraction profile flattens due to the increased diffusivity of the

mixture fraction (taken as the thermal diffusivity, Le = 1) at higher temperature.

The influence of the soot on the radiative field and thermal heat loss is of primary

interest. Radiative heat losses are due to gas and soot, and the contribution due to soot

depends on the soot volume fraction and the temperature. Because the soot is formed

and peaks on the rich side of the flame, whereas the temperature is maximum near the

stoichiometric point, the peak soot radiation will occur between the peak soot and peak

temperature locations. This overlap between soot and temperature is important to the

overall radiative heat loss. The position of the soot peak in the flame will depend upon

its chemical reaction rates and transport properties. The effects on radiation will depend

on the transport and radiative timescales and should be considered in the context of the
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turbulent convective scales.

3.2.1 Thermophoretic Diffusion Effects

The motion of the soot in the unsteady flame depends on the convective and ther-

mophoretic diffusion velocities, as well as its chemical source term. The soot particles

are generally large compared to gaseous species, though still in the free molecular range.

Thermophoresis tends to transport soot down the temperature gradient, which is away

from the flame, towards the fuel stream. Initially, before any soot is present, the soot

peak should overlap with the net soot production peak. However, the soot reaction peak

is dominated not only by the local soot loading but also, importantly, by the temperature

and C2H2 fields. While the soot particles are convected and diffused away from the flame,

the soot reaction rate peak is relatively stationary in physical space, at short times. Figure

3.8 shows the soot mass fraction and soot reaction rate peaks at two times. Both the

soot and soot rate peaks broaden and increase with time, but the soot peak moves to the

right, while the rate peak position is relatively constant.

The mechanism of the motion is examined as follows. The relative position of the

soot mass fraction peak in time is extracted from the simulation. In addition, the

thermophoretic diffusion velocity and convective gas velocity at the soot mass fraction

peak are extracted. The position of the soot peak relative to the reaction rate peak is
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Figure 3.8. Soot net reaction rate and mass fraction at 0.9 ms and 8.0 ms for Case 1
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predicted by integrating the peak velocity components in time. Figure 3.9 shows the

results for Case 1.

The results are somewhat surprising. First, the convective velocity at the soot peak

is 4.2 times higher than the thermophoretic velocity with an average deviation of 4% up

to 86.5 ms. This results in the predicted peak position due to convection being much

higher than by thermophoresis. As previously noted, there is no external flow field in

this case. All the convective velocity is due to the flame expansion as it burns. Figure

3.10 shows the convective velocity, thermophoretic diffusion velocity, and the (negative

of) diffusion velocity of the mixture fraction at the soot peak as a function of time. The

peak soot occurs at a mixture fraction between 0.15 and 0.3, while the stoichiometric

mixture fraction is 0.064. Hence, the convective and thermophoretic velocities at peak

soot are toward the fuel stream, and the mixture fraction diffusion velocity at peak soot

is toward the air stream. This figure provides a feel for the magnitudes of the velocities

involved and how they vary in time. The diffusion velocity of the mixture fraction is

substantially higher than the convective velocity. This former velocity is defined here as

Vξ = Dξ

ξ ∇ξ, where Dξ is taken as the thermal diffusivity. A more rigorous treatment is

considered in Chapter 5. The values of the velocities can be roughly compared to a typical
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turbulent jet. Copalle and Joyeux studied a turbulent flame at an exit Reynolds number

of 11, 800 with an exit velocity of 29.5 m/s and an exit diameter of 4 mm [14]. The peak

soot volume fraction of 1.9 ppmv occurred at 38 cm downstream. Using a simple, cold

turbulent jet decay velocity relation [2], the axial velocity at the peak soot is estimated

to be ≈ 2 m/s. Assuming a turbulent intensity of 10% gives a velocity fluctuation of 0.2

m/s, which is of the same order as the velocities in Figure 3.10.

Another result of Figure 3.9 is the discrepancy between the actual position of the soot

peak and the position predicted by integrating the peak velocities. The predicted relative

position is about a factor of 3 higher than the actual position. The thermophoretic

component alone nearly predicts the position, but the convective component puts it over

the top. The discrepancy lies in the fact that the soot peak is continually being modified

by the reaction source term. As the thermophoresis and convection move the soot peak

to the rich side, the reaction rate peak (which is stationary here) provides a source term

that essentially drags on the soot and moves the peak, essentially slowing it down. As

the reaction proceeds, the mixture fraction profile becomes broader and more diffuse, so

the spreading in the soot peak is partly due to the spreading of the reaction rate peak

that forms it.
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Figure 3.11 shows profiles of soot mass fraction (left) and net soot production rate

(right) at times of 2, 10, and 50 ms. The solid lines are those of the base case, while

the dashed lines are of the base case with no soot diffusion. As noted earlier, the soot

profiles grow and broaden in time and move to the right (away from the flame zone) due to

convection and thermophoresis, being modified by chemical reaction. The thermophoretic

effect is clear in this figure. Without thermophoresis, the soot peak is slightly greater

and less broad due to a steepening of the right side of the peak (the profile is negatively

skewed). The left side of the peak is broader than the right side due to the reactive

source term that is concentrated on the left and builds up the soot level as the soot is

transported to the right via convection and thermophoresis.

The difference between the peaks on the right side in the figure is more directly due to

thermophoresis, and the difference corresponds well with the integrated thermophoretic

velocity. The effect of thermophoresis, however, is not that significant up to 50 ms. The

soot peak mass fractions differ by 20, 17, and 9% at the increasing times of 2, 10, and 50

ms, respectively, shown in the figure. The temperature difference between the case with

and without soot diffusion is barely visible when plotted, with a maximum difference of

16 K (less than 1%) at 50 ms. A smaller temperature difference effect exists at earlier

times. The case without thermophoresis has a slightly lower temperature profile due

to the higher soot level and higher temperature at the soot peak, resulting in slightly

greater radiative heat loss. The soot reaction rate profiles are also shown in the figure.
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Figure 3.11. Soot mass fraction (left) and net soot reaction rate (right) at three
times. Solid lines are the baseline case, and dashed lines are the baseline case with
no thermophoretic diffusion.
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The reaction rate peak is more stationary in time (especially at small times) than the

soot peak. The reaction rate peak broadens with time as the mixture fraction broadens.

The reaction rate peak, however, is not monotonically increasing with time, but initially

increases, then decreases, as a result of the competing dependence of soot concentration,

temperature, and acetylene concentration (the latter two tending to decrease with time,

while soot increases). At 50 ms, the soot reaction rate with no thermophoresis is actually

lower than that with thermophoresis, which is primarily due to the reduced temperature

profile of latter. At the other two times, the difference in the reaction rate is due to

the difference in the soot levels since the temperature and acetylene concentrations are

approximately equal at those times. Thermophoresis alone appears to have a rather

marginal effect on the soot and temperature profiles (value and position), which are the

most important to the overall flame structure.

3.2.2 Radiative Effects

The second parametric case considered is the baseline case with the radiation model

turned off. Figure 3.12 shows a comparison of results for the soot mass fraction and

temperature profiles at times of 2, 10, and 50 ms. The dashed lines are the adiabatic

case. At 2 ms, the temperature profiles are nearly indistinguishable, differing by at most

6 K. At 10 ms the difference of 37 K is still small. At 50 ms, the temperature difference of

261 K is substantial. The fraction of the sensible enthalpy (based on temperature alone)

is 0.3, 2, and 14%, at 2, 10, 50 ms, respectively. At the longest time, the characteristic
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Figure 3.12. Temperature profiles (left) and soot mass fraction (right) at three times.
Solid lines are the baseline case, and dashed lines are the baseline case with no radiative
heat loss.
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dip in the temperature profile on the right side of the peak is evident, where the radiative

heat loss is maximum. This figure emphasizes the relatively long radiation timescale

required for substantial levels of heat loss. The soot profiles are especially indicative of

the dependence on temperature through the reaction rate. While the thermophoresis had

a relatively small effect on the soot concentration, radiative heat loss affects the soot

concentration substantially, but again, only at longer times. The increase of peak soot

without radiation is 1.8, 19, and 270% at 2, 10, and 50 ms, respectively. The locations of

the soot peaks are virtually the same for each time shown, as is the shape for the first two

times, but the shape of the curves at 50 ms is slightly broader on the left of the radiating

peak. The peak boundaries are consistent with the acetylene and temperature profiles.

Figure 3.13 shows profiles of the gas and soot components of the radiative source

term (W/cm3) at times of 2, 10, and 50 ms. The magnitude of the gas radiation rate is

relatively constant in time, as the flame temperature is relatively constant, although the

profiles spread significantly as the flame spreads due to diffusion. The position of the peak

gas radiation moves with the stoichiometric flame position as the mixture fraction spreads

to lower position at the stoichiometric value due to diffusion. The radiative source of the

soot peak increases with time since the radiative component is proportional to the soot

volume fraction, which grows and spreads with time. The soot radiative peak location is

more stationary in time. At 50 ms, the right half of the peak is broader than the left,

0.5 0.9 1.3 1.7 2.1
0

2

4

6

8

Position (cm)

q ra
d (

W
/c

m
3 )

Figure 3.13. Optically thin radiative source term at times of 2, 10, and 50 ms. The
soot contributions are the solid lines and the gas contributions are the dashed lines. In
each case the peaks spread with time.
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indicating the tradeoff between the dependence of the radiative source on soot volume

fraction (which is higher on the right of the radiative peak) and the temperature (which

is higher on the left of the peak). The peaking soot volume fraction counteracts the

decreasing temperature, and the peak appears slightly lifted on the right. At any rate,

at 10 ms, the soot contribution is twice that of the gas. However, the soot radiation does

not increase indefinitely but slows as the soot concentration increase slows (consistent

with Figure 3.14).

The peak value of the soot versus time for the radiating case is shown in Figure

3.14. From this figure, the soot formation timescale (for this, unstrained configuration)

is estimated to be 25 ms, using the common relation τ = ∆Ys/(dYs/dt). The radiative

timescale was estimated in two ways as follows. First, the temperature difference between

the radiative and adiabatic cases was plotted versus time and the timescale estimated.

This approach does not take into account any chemical reaction effects (internal energy

transformations) that may occur at the two different temperatures of the two cases.

The second method was to numerically integrate the profile of q̇/ρcp (units of Kelvin

per second), at the position of the peak radiation, in time, and compute the timescale

as for the soot case. Both methods gave a timescale of 80 ms, indicating that for

this configuration, the radiative timescale is about three times greater than the soot

formation timescale. This radiative timescale is significantly greater than the soot forma-

tion timescale and the relevant transport timescales. The convective (here due to flame
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Figure 3.14. Peak soot mass fraction versus time for the baseline one-dimensional case.
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expansion), thermophoretic diffusion, and mixture fraction diffusion have timescales of 7,

9, and 7 ms, respectively. These values are based on an integration of the data of Figure

3.10 up to 80 ms and are consistent with more crude estimates of the type τ = L2/D.

Here, a higher velocity may give a similar timescale if the corresponding lengthscale is

higher since τ ∼ L/v, where L is the relevant lengthscale.

Figure 3.14 also suggests why laminar diffusion flames often contain substantially

more soot than turbulent diffusion flames. Turns lists smoke points in laminar flames for

various fuels [2]. Ethylene is listed as having a peak soot volume fraction of 5.9 ppmv. At

50 ms for the baseline case here, the volume fraction is 6.7 ppmv. In many turbulent and

opposed flow environments, experimental concentrations of ethylene are about 1 ppmv,

consistent with a shorter formation timescale associated with the flow environment. In

Fig. 3.14, this concentration corresponds to a soot mass fraction of about 0.01, and a

time of 10 ms, which is of the order of many experimental flow times. The point is that

soot grows monotonically in time and that the level of soot produced in a given situation

may be less than the peak values due to the timescales involved. On the other hand,

in order to obtain significant levels of radiative loss, a relatively long residence time is

required. The multidimensional DNS simulations are too expensive to be run for more

than a few milliseconds. Hence, the radiative heat losses are small, and the optically thin

approximation is valid.

3.2.3 Comparison of Gas-Phase Chemical Mechanisms

The detailed mechanism that was used to generate the reduced mechanism was run in

the same manner as the baseline case in order to further validate the reduced mechanism

in the presence of transport. The reduced case was run on a 3 cm domain with 60 µm

grid spacing while the detailed mechanism was run on a 1 cm domain with a 20 µm grid

spacing. The smaller grid in the detailed case was required due to the high resolution

requirements of some short-lived radical species. The smaller domain was used to reduce

the computational run time.

The validation of the reduced mechanism has been described but included premixed

and nonpremixed flames under varying stoichiometry, strain, and includes extinction.

Here the primary interest is to compare the detailed and reduced mechanisms in the

current configuration (one-dimensional, S3D) to examine the effects directly applicable

to the soot formation. The most important gaseous species considered is acetylene since
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this species directly contributes to the soot nucleation and growth steps. Oxygen is the

primary oxidation species, and hydrogen and carbon monoxide are products of the soot

production/growth and oxidation steps, respectively. The two-dimensional simulations

have an upper bound run time of 10 ms, so the detailed case was only run up to 9 ms.

The profiles of all major species and temperature were indistinguishable at 9 ms. In

addition, radical profiles such as OH, O, H, and HO2 were virtually the same (so they are

not shown) with the exception of HO2 which has two peaks, the richer one being slightly

overpredicted. The reduced mechanism (here and previously) represents the important

flame characteristics, and this is not surprising since it was designed that way. However,

the reduced mechanism does not include higher hydrocarbon species (although C3H6 is

included).

Comparison of the impacts of the detailed and reduced mechanisms on the acetylene

and soot mass fractions, along with the soot number density, is performed. Resulting

profiles are shown in Fig. 3.15. The acetylene profile for the detailed mechanism is

about 30% lower than for the reduced mechanism, resulting in an overprediction of the

soot mass fraction. This overprediction of the reduced mechanism is presumably because

acetylene is active in the growth of higher hydrocarbon species, the neglect of which

results in elevated acetylene concentrations. However, the increase really is not that

high, especially considering the level of experimental uncertainty. It is encouraging that

the soot profiles are of the same shape, with the same position and width, but with

differing magnitudes. Certainly, it can be said that the qualitative behavior of the two

mechanisms is the same, and the quantitative agreement is reasonable. The agreement

between the soot number density profile is observed to be much closer than soot and

acetylene mass fractions. All of these results are essentially unchanged at earlier times in

the simulation.

A simple fix to the acetylene overprediction would be to tabulate the acetylene

concentration of the detailed mechanism as a function of mixture fraction, heat loss,

and scalar dissipation rate and use that value instead of the value computed from the

reduced mechanism. This approach would require extensive testing of the parameter space

in one-dimensional nonpremixed simulation and would leave open questions associated

with multidimensional effects, such as curvature and flame-flame interactions that may be

present. Alternatively, the soot reaction rate could be tuned to achieve better agreement

with the detailed mechanism. The soot nucleation and growth rates in the Leung and
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Lindstedt model [5] are proportional to the acetylene concentration, so the discrepancy

between the detailed and reduced models suggests a constant multiplicative factor. A

series of three tests of the baseline case with tuned soot nucleation and growth rates

were attempted using multiplicative factors of 0.7, 0.85, and 0.8. The first two factors

were computed by simply taking the fractional overshoot or undershoot in the soot

mass fraction between successive cases. This approach tended to overcompensate or

undercompensate for the error, so the final value was found by a curve-fit to the relation

between the difference between the soot peaks of the reduced and detailed mechanism

and the corresponding rate factor. This approach gave a value of 0.8 instead of the value

of 0.77 which would have been used if computed as for the first two tries. The factor

of 0.8 does a good job of compensating for the increased soot produced by the elevated

levels of acetylene in the reduced mechanism. As Fig. 3.16 shows, the soot mass fraction

and number density peaks of the reduced and detailed mechanisms are nearly the same

with this value. The good agreement was also observed at times of 1 and 4 ms. The

proximity to unity of the 0.8 factor emphasizes that the reduced mechanism performs

fairly well. In addition, use of this factor would not be expected to do any worse than the

current soot mechanism if used under conditions not explicitly considered in determining

the rate factor, e.g., conditions of higher strain.



CHAPTER 4

TWO-DIMENSIONAL MIXING LAYER

SIMULATIONS

A series of two-dimensional temporal mixing layer simulations were performed to study

soot formation and flame-flow interactions in a well-characterized and physically relevant

configuration. Effects of Reynolds number and radiative heat transfer on soot formation

are investigated, as well as the influence of heat release on the flame dynamics.

4.1 Introduction

The mixing layer that develops between two parallel streams at different velocities is

considered an ideal canonical configuration for the fundamental study of flame-turbulence

interactions. Mixing layers are sensitive to flow perturbations which initiate the well-

known Kelvin-Helmholtz instabilities present in many flow environments where a par-

allel shear flow exists. Examples include the region behind a rearward facing step,

the developing region of turbulent jets, and the wake region of a bluff body. Figure

4.1 is a schematic of a spatially evolving mixing layer that develops as two streams

separated by a thin splitter plate are brought together. The mixing layer thickness

increases in the downstream direction as the vortices entrain fluid. The rollup of the

eddies strains the interface between the two streams, increasing the surface area and

gradients by which diffusive processes result in molecular mixing. In addition, vortex

pairing occurs between eddies, resulting in a further increase in the layer thickness and

enhanced mixing. Eventually, the flow becomes fully turbulent as the Reynolds number

increases. In the self-similar turbulent flow region downstream, the width of the mixing

layer has been shown to increase linearly with distance [19]. In the initial developing

region, the mixing layer increases steadily until the first eddy forms, after which the layer

thickness is relatively constant until vortex pairing occurs, at which point the mixing

layer thickness increases again [116], and so on.

Spatially-developing mixing layers are characterized by two velocity scales, the mean
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Figure 4.1. Typical experimental mixing layer configuration.

stream velocity, and the velocity difference. The primary length scale is taken as the

vorticity thickness defined in terms of the maximum velocity gradient, or the momentum

thickness, which is an integral property. The Reynolds number increases as the layer

thickness increases. Spatial mixing layers are not symmetric about the centerline but

spread preferentially into the lower speed fluid [17].

DNS simulations are often performed for temporally evolving mixing layers rather

than spatially evolving mixing layers. This is accomplished via a Galilean transformation

in which the reference frame follows the evolution of a given eddy and allows many

aspects of the spatial configuration to be studied with greater computational efficiency.

The Galilean transformation is given by

X → Uat, (4.1)

where Ua is the average velocity across the layer [117]. In the temporal mixing layer,

the high- and low-speed streams are given equal velocities in opposite directions. This

corresponds to the spatial configuration when the velocity difference is much smaller

than the average velocity. Nonreactive temporal mixing layers are symmetric about the

centerline before turbulence develops. The temporal configuration has the advantage of

requiring smaller domain sizes and, hence, reduced computational cost, as well as allow-

ing simpler boundary conditions. In the spatially-developing configuration inflow and

outflow boundary conditions are required through which the streamwise flow passes. The

specification of these boundary conditions is much more complicated than the periodic

boundary conditions that are used in the temporal configuration.

In the developing regions of mixing layers, the primary flow structures are two-
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dimensional. Even when the flow transitions to turbulence, two-dimensional structures

are observed to persist. In three dimensions, secondary, streamwise vorticies develop in

the so-called braid regions between the main spanwise vorticies.

4.2 Configuration and Initialization

Here, two-dimensional temporal mixing layer simulations are performed to study soot

formation and flame-flow interactions. The configuration consists of periodic boundaries

in the streamwise direction and nonreflecting outflow boundaries in the cross-stream

direction. The lower portion of the domain consists of the oxidizer stream (ξ = 1), and

the upper portion of the domain consists of the fuel stream (ξ = 0), with the mixing

layer between the two streams represented by a hyperbolic tangent transition. A flame

is initialized as described previously in Chapter 3 for the reactive shear layer cases. The

pressure in all cases is 1 atm and the streams consist of pure ethylene and air at 300 K.

The velocity field is specified as a hyperbolic tangent transition between equal and

opposite free-stream velocities:

u(y) =
∆U

2
tanh(σy). (4.2)

Here, σ is a scale factor that determines the amplitude of the velocity gradient. Higher

values of σ correspond to steeper velocity gradients or a lower vorticity thickness. Figure

4.2 is a schematic of the initial velocity profile. The layer thickness is referred to here as

the vorticity thickness and is defined as

δ =
∆U∣∣∣dU

dy

∣∣∣
max

. (4.3)

Inserting Eq. (4.2) into Eq. (4.3) gives

δ =
∆U

∆U
2 σ(1− tanh2(σx))max

=
2
σ
. (4.4)

This velocity profile (which contains an inflection point) is inviscidly unstable to per-

turbations, and the profile develops a Kelvin-Helmholtz instability. In DNS simulations,

it is desirable to develop the initial vortex, or roller, as quickly as possible in order to



105

Figure 4.2. Initial velocity profile for the temporal mixing layer.

minimize the computational run time. This is done by perturbing the initial velocity

profile using linear stability theory applied to the inviscid, incompressible velocity profile.

Because the flow is parallel, flow perturbations are decomposed into their normal modes,

similar to what is done in a Fourier series. The normal modes are taken to be traveling

waves, where the wavelength is in the streamwise direction, and the wave amplitude is

taken as a function of the cross stream direction y. The velocity is decomposed into the

sum of the base profile and a perturbation as

~u(x, y, t) = ~ub(y, t) + ~up(x, y, t), (4.5)

where ub and up denote the base tanh profiles and perturbation profiles, respectively.

Appendix C details the specification of the velocity perturbations.

Figure 4.3 shows results of a DNS simulation applying the perturbed velocity profile

to a temporal mixing layer. The figure shows the mixing between two streams at

five sequential times when the velocity field is perturbed by both the fundamental and

subharmonic modes. The upper figures show contours of the vorticity magnitude in the
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Figure 4.3. DNS simulation of a temporal mixing layer with vortex pairing.

range 0-33,000 s−1. The lower figures are mixture fraction (with a range of 0-1). The

domain is 2×2 cm, with pure nitrogen at 300 K in both streams, with ∆U = 40 m/s

and δ = 0.14 cm. The velocity perturbation parameter (see Appendix C) is ε = 0.05.

This figure illustrates both the initial rollup of the eddies, as well as vortex pairing that

occurs. The upper figures are the vorticity magnitude, and the lower figures are images

of scalar mixing of the two nitrogen streams.

4.2.1 Simulation Parameters

Results of four simulations are discussed below with simulation parameters provided

in Table 4.1. The simulations consist of

• Case 1: A baseline case with soot formation.

• Case 2: The baseline case at a higher Reynolds number (the velocity difference is

∆U = 15 m/s).

• Case 3: A cold flow simulation with no chemical reaction consisting of streams of

nitrogen.

• Case 4: The baseline case with no radiation.

Except for Case 4, the optically thin radiation model is used. The velocity perturbation

parameter is ε = 0.05 for all cases.
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Table 4.1. Simulation parameters of mixing layer Case 1.

Lx (cm) 1 ∆U (m/s) 10 Ngrid 131,072
Ly (cm) 2 ∆x ,∆y (µm) 40 Nproc 64
δξ (mm) 1 τr (ms) 10 Cost (CPU-hr) 6,656

4.3 Results

The structure of a reacting hydrocarbon mixing layer has been studied experimentally

for temporal mixing layers [118, 119]. Here, similar temporal DNS simulations are

performed and discussed. While the current cases do not correspond exactly to those

of experimental configurations, an effort has been made to make the DNS simulations as

relevant as possible, and many similar features are observed.

4.3.1 Mixing Layer Structure

Figure 4.4 shows the evolution of the temperature field for Case 1 at five times: 2,

4, 6, 8, and 10 ms. The first two frames show the structure just prior to and after the

initial development of the vortex. The upper half of the figures consists of fuel moving

towards the right, and the lower half of the figure consists of air moving towards the

left. The velocity profile is dominated in the early stages by the horizontally-dominated

velocity. As the velocity perturbations grow, the Kelvin-Helmholtz instability develops

and the vortex rolls up, forming a coherent eddy, which entrains fluid into the inner

mixing region. These temperature contours illustrate the basic structure of the layer. As

Figure 4.4. Progression of temperature (K) contours for Case 1. Frames are at 2, 4, 6,
8, and 10 ms.
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has been previously observed, the reaction zone tends to locate entirely outside of the

mixing layer [118]. This is clear from the relatively flat band of high temperature located

at the base of the mixing layer. At most, the temperature band is slightly curved by

the strain imposed by the vortex roll. The vortex forms and develops on the fuel side

of the reaction zone. The primary interaction of the vortex with the flame is through

convective mixing and straining of the flame. As the combustion products mix with fuel

in the vortex, the temperature decreases. The reaction zone broadens with time as the

fuel is continually brought into contact with the air stream and the mixing layer grows.

4.3.1.1 Mixture Fraction Profiles

Analyzing the structure of the mixing layers through the mixture fraction is convenient

because mixture fraction is a conserved scalar with no reactive source term. The mixture

fraction shows the mixing of the material of the two streams and, to first order, is affected

by complex chemical composition and temperature gradients only through fluid dynamic

effects and the dependence of its diffusivity on temperature and composition. Figure 4.5

shows contours of mixture fraction for Cases 1, 2 and 3. The two isocontour lines shown

in the figure are for ξ = 0.5, and ξ = ξst = 0.064. Only the central 1 cm of the transverse

distance of the domain is shown. The mixture fraction is nominally the local fluid mass

fraction originating in the fuel stream. Any conserved scalar can be used to define the

mixture fraction. Here, Bilger’s definition of the mixture fraction is used [120], which

is a linear combination of elemental mass fractions. In the second and third frames of

Cases 1 and 2, the vortex acts to entrain fuel into the core at the trough of the wave on

the right side of the eddy. At the same time, combustion products are entrained into the

eddy from the base of the vortex. These flame products then mix with the fuel in the

vortex core.

Several important differences are observed between the three cases shown in Fig. 4.5.

The cold Case 3, representing pure scalar mixing, is highly symmetric, in contrast to

the two reacting cases. The differences in the distribution of this quantity between the

reacting and cold cases are an indication of the effect of the combustion reactions on the

fluid dynamics. The differences between the cases are caused by the effect of heat release,

which increases the temperature and decreases the density. The corresponding effects of

increased kinematic viscosity tend to lower the local Reynolds number in reactive regions,

while the decrease in density of the fluid results in dilatation, which decreases the fluid
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Case 1

Case 2

Case 3

Figure 4.5. Progression of mixture fraction for three cases. In each row the frames are
at 2, 3, 4, 5, and 6 ms. All frames are 1×1 cm. Overlaid are ξst = 0.0637 and ξ = 0.5
isocontours.

vorticity. The mean molecular weight of the gases is nearly constant for the ethylene-air

system chosen, with variations of less than 3%. There is no change of total moles for

complete combustion of ethylene, and the molecular weight of ethylene, 28, is close to

that of air. Hence, for this constant pressure system, the density change is almost entirely

associated with temperature changes.

The position of the vortex-eddy is located in the upper portion of the domain for

the reacting cases, in contrast to the cold case, which is centered in the middle of the

domain. The fluid expansion, or dilatation, defined as the divergence of the velocity

field is positive in the flame band, effectively pushing the vortex upward. In addition to

the lack of symmetry in the reacting cases, the cold case has a center of vorticity that is

stationary in the computational domain, as expected, while the reacting cases move to the

right through the periodic domain. Figure 4.6 compares the cold Case 3 to the reacting

Case 1 at 5 ms. The figure is colored by velocity magnitude with vorticity contours

overlaid. The velocity at the top of the vortex of Case 1 is clearly greater than that at
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Case 3 Case 1

Figure 4.6. Velocity magnitude contours (m/s) for Cases 1 and 3 at 5ms. Overlaid are
vorticity contours spaced at 1400 s−1.

the bottom, with the result that the vortex moves to the right. The reduced velocity

at the bottom is due to the dilatation at the vortex bottom, as well as the increased

kinematic viscosity. Perhaps more importantly, the initial burning solution has a reduced

density in the lower part of the domain, so that these regions have less momentum than

the higher-density upper air stream from the beginning.

In Fig. 4.5, the effect of heat release on the mixing layer development is pronounced.

Cases 1 and 3 differ only by the presence of chemical reaction. The 4 ms frame for Case

1 appears to coincide roughly with the 3 ms frame of Case 3, whereas at a later time, the

6 ms and 4 ms frames seem to be in phase for Cases 1 and 3. At the same time, Case

2 seems to be better related to the slower cold Case 3. These effects have been shown

to be due to the decreased vorticity in the region of the vortex due to vorticity diffusion

via baroclinic torque and dilatation, as well as the decrease in Reynolds number with

increasing kinematic viscosity [37].

4.3.1.2 Flame Location

It is well known that flame zones tend to reside outside of shear mixing layers on

the air side. Pickett and Ghandhi found this in their experimental mixing layers and

summarized similar findings by others [119]. Explanations given include

• an increased diffusion coefficient with temperature in the internal layer, tending to

move the flame outside the vortex,

• heat release, causing vorticity decay and relaminarization of the reaction zone, and
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• dilatation of the flame pushing the vorticity zone away from the reaction zone.

This flame exclusion is important since mixing layer structures appear in many practical

turbulent flows, such as exit regions of burners.

In the cold Case 3, ξ0.5 is rolled up into the core, always located where the two streams

meet, as expected. In contrast, ξst is initially rolled up into the core but is then pushed

out of the core at later times and is located below the vortex core. For the reacting cases,

the behavior is the same except that ξst never makes it into the core at all but lies in

a flat band below the vortex at all times. What is most remarkable about Fig. 4.5 is

that even ξ0.5 is excluded from the vortex in Cases 1 and 2. This effect is more visible in

Case 2 due to the smaller convective timescale. At 5 ms, ξ0.5 lies in a flat band below the

vortex. This behavior shows the great difficulty of pulling a flame inside the vortex, even

for very high values of the stoichiometric mixture fraction. Clemens and Paul observed

this behavior for ξst up to 0.44 for diluted hydrogen flames [121]. Here, exclusion of the

ξ0.5 isocontour from the vortex is observed when ξst = 0.0637.

The motion of isocontours of the mixture fraction is examined in the following chap-

ters. As a given isocontour (e.g., ξst) is rolled into the eddy, the contour is folded on itself

forming a sharp cusp, around which diffusion is geometrically enhanced. Fuel diffuses

from the rich side to the lean side of the isocontour, causing it to retreat out of the

mixing zone. The exclusion of the ξ0.5 isocontour in the reacting cases, but not the cold

case, occurs because the density is lower in the lean portion of the domain where the

flame lies. The relatively high density in the fuel-rich upper portion of the domain results

in higher momentum there, the density-weighted vorticity is higher there, and the vortex

that forms is centered in a region of ξ > 0.5. In Case 1, the peak vorticity occurs at a

mixture fraction of approximately 0.66. Figure 4.7 shows the mixture fraction progression

for Case 1 with the isosurface of ξ0.66 shown. This value appears to ride the center of the

vortex roll in a manner similar to ξ0.5 in Case 3, shown in Fig. 4.6. Clemens and Paul

noted that the density ratio had a more significant effect on the interaction of the flame

with the mixing layer than the value of the stoichiometric mixture fraction [121].

4.3.2 Soot Formation and Transport

Figure 4.8 illustrates the growth of the soot in the mixing layer for Case 1 and is

similar to Fig. 4.4 for the temperature contours. Here, the soot clearly is concentrated

along the fuel-rich side of the flame band. As the vorticity is organized into a vortex,



112

the soot follows the streamlines of the flow and is rolled up into the vortex. The gaseous

species are transported along as well, but their higher diffusivity results in greater mixing.

Following the soot mass fraction evolution in Fig. 4.8, the soot forms initially via

nucleation and surface growth prior to the development of the vortex. Once the vortex

forms, soot is swept away from the flame zone, resulting in a decreased level of soot, and

hence soot growth at the flame. After the vortex formation, soot growth resumes and the

concentration increases with time to its maximum value on the rich side of the flame. At

the same time, soot is continuously convected into the mixing layer where it mixes with

cold fuel and combustion products. In this mixing zone, the temperature is reduced, and

the soot reactions cease. This process, by which soot is loaded into the fuel stream, may

have important implications in turbulent flames and fires where the soot may be formed

and concentrated in one region, then transported to another where it again may interact

with the flame, possibly breaking through the flame. These effects are the subject of the

following chapters.

Figure 4.9 shows a comparison of soot mass fraction, number density, net soot pro-

duction rate, scalar dissipation rate, and temperature for Case 1 at 6 ms. At this time,

the number density concentrates near the flame where the nucleation rate is high, while

elsewhere the number density drops as coagulation occurs. The soot mass fraction at

this time concentrates not at the flame but along the wave crest. This time is near

the beginning of the vortex formation, as noted above, where the soot is first entrained.

The soot production rate is concentrated at the flame zone. Comparison with the scalar

dissipation rate profile shows that the peak soot formation rate is occurring in regions

of low scalar dissipation rate. At higher values of scalar dissipation rate, soot formation

is known to be slowed as a consequence of the decreased Damköhler number. This is

one of the reasons gas turbine combustors operate under highly turbulent, high strain

conditions. Also shown is the temperature for comparison. At this time, the peak soot

rate is 0.00048 g/cm3s and occurs at a temperature of 1750 K. At 10 ms, the soot reaction

rate is nearly uniform in a band along the flame in the streamwise direction. At that

time, the peak soot reaction rate is 0.00058 g/cm3s and occurs at 1760 K. At 6 ms,

the peak soot mass fraction is 0.0045 and occurs at a mixture fraction of 0.54 and a

temperature of 880 K. These diluted, low-temperature conditions indicate the extent of

mixing and contrast with the expected peak in the soot mass fraction near the flame

at much leaner mixture fraction. At 10 ms, the peak soot mass fraction is 0.0064 at
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1424 K and a mixture fraction of 0.22, in agreement with the peak from flamelet and

one-dimensional simulations. The motion of the peak soot mass fraction in temperature

and mixture fraction space will have important consequences on the radiative heat loss,

which is proportional to the soot volume fraction, with a strong temperature dependence.

The soot particle size tends to grow with time due to the combined effects of surface

growth and particle coagulation. Figure 4.10 shows the spatial distribution of particle

size in the mixing layer. In regions of high number density, the soot size is small since

this is the region of nucleation and early soot growth. The particle size is larger in regions

of higher soot volume fraction as the particles have experienced growth and coagulation.

Because the mean particle size involves the ratio of the soot mass fraction and number

density (see Eq. (2.111)), regions of little or no soot cause numerical difficulty when

computing a particle size. The contours of Fig. 4.10 have been cropped to include only

regions where the number density and mass fraction are at least a factor of 0.015 of

the maximum values. The particles are at their largest in regions that are relatively

cool. The large size results in decreased mobility since the particles are assumed to

be transported via soot gradients with a diffusivity that varies inversely as the particle

diameter squared.

The overall quantities of interest in this flame, such as the soot volume fraction,

number density, and particle size, are compared with those reported for two experimental

laboratory flames of similar configuration, i.e., nonpremixed, nondiluted ethylene fuel,

at ambient conditions, in laminar or turbulent diffusion flames. Table 4.2 shows the

comparison for Case 1. The peak soot volume fraction, number density, and aggregate

size at the peak volume fraction are reported. The comparison of the mixing layer case

with the laminar opposed flame is expected to be close since the soot model used in the

mixing layer case was based upon the experimental result. The mixing layer case is taken

at a residence time of 10 ms. The timescale for the laminar flame based on the inverse of

the strain rate is 16 ms. For the turbulent case, the axial time-of-flight to the peak soot

position using the jet exit velocity is 14 ms.

A comparison of the total soot mass in the domain is shown for Cases 1, 2, and 4 in

Fig. 4.11. The soot mass shown in the figure is relative to the final soot mass achieved

in Case 4. In this figure, the adiabatic case results in a higher level of soot due to the

higher temperature. The difference between Cases 1 and 4 is relatively small, due to the

low overall heat loss. The gap between the two curves widens with time since the overall
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Figure 4.7. Mixture fraction progression for Case 1 with isocontour at ξ = 0.66.

Figure 4.8. Soot mass fraction progression for Case 1 at 2, 4, 6, 8, and 10 ms. The
stoichiometric mixture fraction isocontour is also shown.

Figure 4.9. Soot formation for Case 1 at 6 ms. The stoichiometric mixture fraction
isocontour is also shown.

Figure 4.10. Soot particle size for Case 1 at 2, 4, 6, 8, and 10 ms.
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Table 4.2. Comparison of bulk sooting properties of Case 1 with two experimental
configurations. Case 1 is at 10 ms.

Particle
Description fv (ppm) n (m−3) Size (nm)

Case 1 Temporal mixing layer 0.9 1.5× 1017 55
Hu [7] Turbulent jet: Re=13,500 1.1 1.1× 1017 35
Vandsburger [122] Laminar opposed flame 1 0.8× 1017 60

strain rate = 63 s−1
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Figure 4.11. Relative soot loading on the computational domains for three cases.

heat loss and soot concentration are integral properties. For Case 2, the results deviate

strongly from the other two cases. The effect of the higher Reynolds number outweighs

the radiative effect. Initially all three cases are identical. The point at which the soot is

rolled up into the layer is clearly visible as a jog in the curves. This jog occurs at about 3

and 6 ms for Case 2 and Cases 1, 4, respectively, and is consistent with the trend shown

in Fig. 4.5. The decrease in the rate of global soot production at the jog (indicated by

the decreased slope of the curves) is the result of the soot formed at the flame front being

swept into the developing mixing layer as shown previously. Case 2 was run for a shorter

length of time because of the higher velocity and faster layer development in the fixed

domain size.

The convection of the soot away from the flame zone is highlighted in Fig. 4.12, which
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Figure 4.12. Conditional mean soot mass fraction for the mixing layer Case 1 at 6 ms.

shows the conditional mean soot mass fraction as a function of mixture fraction and time.

Seventy-five mixture fraction bins were used in the conditioning. The figure shows that

the soot is initially formed and grows near a mixture fraction of 0.2. At 5 ms, the vortex

sweeps the soot into the mixing layer where the soot concentration at ξ = 0.2 drops and

the soot migrates to higher ξ as it is mixed with fuel and combustion products in the

vortex-eddy. Once the vortex is formed, the soot again grows in the ξ = 0.2 region,

while the soot in the ξ = 0.4 region is diluted, and its concentration falls. The figure

shows a continual increase in the mixture fraction at which soot is present, extending to

ξ = 0.9 by the end of the simulation. The mixing layer simulations not only highlight

the transport of soot into the fuel stream but the extent to which coherent structures, in

this case a single vortex, influence the soot concentration and location in the flow.



CHAPTER 5

TWO-DIMENSIONAL TURBULENT

FLAMES

Soot formation and transport were presented in the previous chapters in simplified con-

figurations consisting of one-dimensional relaxing diffusion flames and a two-dimensional

laminar mixing layer with a single eddy. In the latter simulations, soot was shown

to be transported away from its region of formation into the mixing layer on the fuel

side of the flame where its mixture fraction increased. Differential diffusion effects

result in significant transport of soot in the mixture fraction coordinate, affecting the

location of soot relative to the flame and, consequently, soot temperature, which dictates

reaction rates and radiative emission. Here, the term differential diffusion is used to mean

the difference between the Fickian diffusion of gaseous species and the thermophoretic

diffusion mechanism of soot transport. In this chapter, soot formation in two-dimensional

decaying turbulence is presented to examine the details of soot transport and soot-flame

interactions. These results were recently published in [94].

5.1 Introduction

Several previous studies have been performed that specifically examined the impor-

tance of flame structure and flow configuration on soot formation characteristics. Soot is

formed on the fuel-rich side of diffusion flames, and the direction of the fluid convection

relative to the flame, as well as flame shape and strain have a strong impact on the soot

formation and growth. Smooke et al. [104, 11] have performed detailed experimental

and computational studies of steady laminar coflow diffusion flames. Shaddix et al. [12]

compared pulsed normal and inverse coflow ethylene diffusion flames. They note that

while normal diffusion flames are a more natural configuration, inverse flames may have

structures similar to those occurring in large-scale turbulent fires where an eddy may

inject a pocket or tongue of air into a region of fuel. Kaplan et al. [123] performed

simulations of unsteady pulsed methane–air diffusion flames showing large increases in
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peak soot concentrations over their steady counterparts due to increased soot residence

time at favorable temperatures and stoichiometries in vortex structures.

In counterflow flames, increasing strain rate results in reduced levels of soot, mainly

due to reduced residence time in reaction zones [124]. Stream doping/dilution (e.g., O2,

CO2, or N2 addition) has been shown to affect soot levels both through temperature and

chemical changes [125]. Several researchers have evaluated the effect on soot formation of

altering the value of the stoichiometric mixture fraction through fuel dilution and oxygen

enrichment in the fuel and oxidizer streams, respectively [124, 126, 127, 128, 129, 130].

For example, in ethylene flames the stoichiometric mixture fraction with pure fuel and

air is 0.064. By systematically moving nitrogen from the air stream to the fuel stream, a

stoichiometric mixture fraction of 0.78 can be obtained, with a constant adiabatic flame

temperature [124].

For counterflow diffusion flames, shifting the stoichiometric mixture fraction can move

the flame from one side of the stagnation plane to the other, hence changing the direction

of the fluid convection through the flame. For flames that reside on the oxidizer side of

the stagnation plane, convection transports soot away from the flame zone, minimizing

the effects of oxidation and reducing the temperature of the peak soot concentrations.

The converse is true for flames that reside on the fuel side of the stagnation plane, where

convection transports soot towards the flame to higher temperatures and oxidation regions

[129, 130].

Kang et al. [129] compared normal and inverse jet diffusion flames to counterflow

opposed jet flames with varying stoichiometric mixture fraction to change the flame

structure. They note the similarity of an inverse diffusion flame to the usual counterflow

flame with the flame on the oxidizer side of the stagnation plane, and the similarity of a

normal jet diffusion flame to a counterflow opposed jet flame with the flame on the fuel

side of the stagnation plane. In this comparison, it is particularly interesting that, while

counterflow flames require a change in the stream composition (stoichiometric mixture

fraction) to change the flame structure, the two-dimensional diffusion flames can achieve

similar flame structures through the hydrodynamic configuration. Kang et al. note that,

in the normal diffusion flame, convective streamlines cross from the air side to the fuel

side near the base of the flame (convecting soot away from the flame), while the opposite

occurs at the top of the flame. They found that thermophoresis dominates soot diffusion

and acts in the direction of convection near the base and opposite of convection near
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the tip. Multidimensional effects of curvature near the flame tip are also present, with

thermophoresis tending to focus the soot particles into the fuel core.

In turbulent flames, which are inherently multidimensional and unsteady, we may

expect similar behavior. That is, the structure of the soot-flame interaction will depend

locally upon the direction of fluid convection relative to the flame, as well as on the flame

shape. In this chapter, insights gained from laminar flame structure are used to analyze

turbulent soot formation and transport. Specifically, the effects of flame shape obtained

from local curvature and fluid velocity normal to the flame are examined. The emphasis

of this work is on flame structure and not turbulent mixing statistics. It is found that

the differential diffusion of soot allows fluid convection relative to the flame to play a

dominant role in the soot formation and growth process. The convection velocity relative

to the flame is shown to depend on the flame curvature. These effects determine the

location of soot in the mixture fraction coordinate and, hence, the soot temperature,

which has a strong impact on soot concentrations and radiative heat transfer.

5.2 Configuration and Initial Conditions

The configuration consists of a two-dimensional stripe of fuel surrounded by air, with

a two-dimensional isotropic turbulence field superimposed. Periodic boundary conditions

are imposed in the direction of the fuel stripe (horizontal), and nonreflecting outflow

boundary conditions are imposed in the other direction (vertical), resulting in a constant

mean pressure. No mean velocity field is imposed. The intent of this configuration is

to obtain a flame that is substantially influenced by a random, unsteady flow field, so

that unsteady, multidimensional effects may be investigated. The configuration results in

two flame surfaces on either side of the fuel stripe, increasing the amount of flame data,

and resulting in a symmetric (except for the turbulent field) profile around the horizontal

line splitting the fuel stripe. The case is a temporally evolving simulation as opposed

to a statistically stationary case, as might be observed in a nonpremixed turbulent jet

flame. This configuration is computationally more efficient because a smaller domain

is required to achieve a fully turbulent state. Likewise, the two-dimensional domain

saves substantially on computational cost. It is emphasized that the purpose of the

simulation is not to gather turbulent mixing statistics, but rather to examine the influence

of an unsteady, multidimensional flame on soot formation and transport. To this end,

the current simulation is believed to achieve this goal, with the results expected to be
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qualitatively similar in more general three-dimensional cases of similar flame structure.

The fuel stripe consists of pure ethylene, 0.5 cm wide, surrounded by air. The stream

compositions are given as configuration 1 in Table 2.3. The system pressure is 1 atm,

and both stream temperatures are 300 K. The domain size is 2 cm in the direction of

the fuel stripe and 3 cm in the transverse direction. The larger vertical extent is chosen

to keep the flame away from the boundaries of the domain. The total number of grid

points is 960,000. A uniform grid size of 25 µm is used in both directions and is found

to adequately resolve all velocity, temperature, and chemical species fields. This was

verified by conducting two-dimensional resolution tests in a temporal jet configuration

with turbulent straining sufficient to induce extinction (which does not occur in the

present simulations). Straining to extinction is conservative in that the smallest chemical

species lengthscales (especially radical species) are observed at the point of extinction.

No differences in species or velocity profiles were observed on grid sizes of 12 and 24 µm.

The initial, burning composition field is specified as outlined in Chapter 3 by setting

the mixture fraction (ξ) profile and mapping the temperature and composition of the

corresponding steady laminar flamelet solution. The following function for mixture

fraction was applied to the domain:

ξ(y) =
1
2

(
1 + tanh

[
2
δξ

(y − y1)
])

· 1
2

(
1 + tanh

[
2
δξ

(y − y2)
])

, (5.1)

where y1 and y2 are the centers of the transitions. The transition width, δξ, is 0.11 cm

and is approximately twice the extinction transition width and gave a scalar dissipation

rate about one-third of the stoichiometric extinction dissipation rate of 156 s−1.

A turbulent velocity field was overlaid on the composition field in order to strain

and wrinkle the flame. The turbulence was initialized using an isotropic, homogeneous

turbulent kinetic energy spectrum given by [131]

E(k) =
32
3

√
2
π

u′2

ke

(
k

ke

)4

exp

[
−2
(
k

ke

)2
]
. (5.2)

Here, ke is the most energetic wave-number given by

ke =

√
4ε

10νu′2
. (5.3)
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The turbulence parameters were set by choosing u′ and ε such that the desired autocor-

relation integral scale (L11) was obtained:

L11 =
8

3ke

√
2
π
. (5.4)

The turbulence field was filtered to within 1 cm of the open boundaries in order to keep

the flow of the expanding flame from recirculating at the boundary. The autocorrelation

integral scale and the most energetic lengthscales have values of 0.188, and 0.556 cm,

respectively. The Reynolds number of the autocorrelation integral scale is 180, based on

the air stream. The initial Kolmogorov lengthscale is 0.0076 cm giving three grid points

across the Kolmogorov scale.

Table 5.1 summarizes the initial flame and turbulence parameters of the simulation,

as well as estimates of important timescales. The turbulence timescale is defined as the

ratio of L11 and u′; the flame dissipation timescale is defined as 2/χst,ext. The soot

diffusion timescale is based on thermophoresis as τ = δ2ξ/0.554ν, using the kinematic

viscosity corresponding to products of a mixture at ξ = 0.2 at 1500 K and the initial

mixture fraction transition width. The soot reaction timescale corresponds to a nominal

value based on global flow and mixing scales in, e.g., jet flames (such as a jet exit

velocity and a downstream location of peak soot). As such, this value is not an inherent

reaction timescale but includes global, integral mixing effects. The present simulations

are conducted to 5 ms, which is sufficient to examine the local soot-flame interactions

under reasonable turbulence conditions noted below.

The timescales are of similar magnitudes except for the initial turbulence, which,

however, will increase with time. The initial turbulence parameters are of the same order

as those exiting a laboratory-scale turbulent jet. For example, Coppalle and Joyeux [14]

Table 5.1. Simulation parameters and timescales.

Parameter Parameter Timescale (ms)
Lx (cm) 2 δξ (cm) 0.11 Turbulence 1.25
Ly (cm) 3 # cells 960,000 Soot reaction 10
L11 (cm) 0.188 # timesteps 325,000 Soot diffusion 6
u′ (cm/s) 150 Run time (ms) 5 Flame dissipation (ms) 13
Hξ (cm) 0.5 Sim. Cost. (CPU-hr) 32,500
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studied a turbulent flame with an exit velocity of 30 m/s (a u′ of 5% of the exit is typical)

and an initial jet diameter of 4 mm. Hu et al. [7] studied similar flames and cited soot

layers down to 1 mm and integral scales of approximately 5 mm, so the values in Table 5.1

are reasonable and should allow the DNS results to be relevant qualitatively to practical

situations.

5.3 Flame Analysis

The location of peak soot concentration and soot transport, relative to a flame zone,

are important since they dictate the soot temperature and, hence, reactivity and radiative

properties. This relative motion results from the combined effects of fluid convection,

gaseous species diffusion, and thermophoretic diffusion of soot. To quantify these effects,

we define the flame location as the position of the stoichiometric iso-surface of mixture

fraction. Since soot mainly follows pathlines of the fluid convection (with an additional

thermophoretic diffusion component), the motion of the stoichiometric iso-surface of

mixture fraction relative to the local fluid convection determines whether soot will be

convected into or away from a flame zone. Gibson [132] and Pope [133] derived the

expression for the velocity of a constant-property scalar iso-surface relative to the local

fluid motion. For variable properties, the relative velocity is

vξ = −
∇ · (ρDξ∇ξ)

ρ|∇ξ|
n. (5.5)

In this equation, the surface velocity relative to convection is due to diffusion in the

direction of the surface normal, defined by

n =
∇ξ
|∇ξ|

, (5.6)

where the normal points towards the fuel stream. Henceforth, vξ will be referred to as the

flame displacement velocity. For vξ > 0 the flame is moving toward the fuel stream and

for vξ < 0 the flame is moving toward the air stream. The direction of convection across

the flame is vfc = −vξ. Thus, for negative vξ, the fluid is convecting across the flame

from the air side to the fuel side, and we expect soot to be convected away from the flame

zone. This situation is analogous to the canonical fuel-air counterflow configuration.

Equation (5.5) contains multidimensional effects that can be expanded in terms of

flame-coordinates as done by Echekki and Chen [134], who applied a similar analysis to



123

premixed flames. By applying the chain rule of differentiation to |∇ξ| = n · ∇ξ in Eq.

(5.5) and introducing the operator ∂
∂η = n · ∇ and noting that |∇ξ| = ∂ξ

∂η , we obtain

vξ = −Dξ∇ · n− 1
ρ|∇ξ|

∂

∂η

(
ρDξ

∂ξ

∂η

)
. (5.7)

Here, η is the flame-normal coordinate in the direction n.

The first term represents the contribution due to iso-surface curvature, where ∇ · n

is the curvature of the iso-surface. With this definition, curvature is taken to be positive

when the center of curvature is on the oxidizer side. The second term in Eq. (5.7) is

relative flame motion due to diffusion in the direction normal to the flame. The normal

diffusion contribution to the flame displacement velocity can be written in terms of the

scalar dissipation rate defined as χ = 2Dξ|∇ξ|2. This is done by rearranging the definition

of χ to give |∇ξ| =
√
χ/2Dξ, substituting this into |∇ξ| and ∂ξ

∂η in Eq. (5.7), and

simplifying, to give

vξ = −Dξ∇ · n−
Dξ

2
∂

∂η
ln (ρ2Dξχ/2). (5.8)

Hence, the flame displacement velocity is made up of a curvature component and a

one-dimensional normal diffusion, or scalar dissipation rate component.

This type of analysis, in which the flame surface motion is studied, has been extensively

applied to premixed combustion in the development and use of the G-equation [20].

Application to nonpremixed combustion is less common and has been mainly used in the

development of flame surface area models [74, 135].

Figure 5.1 shows the schematic of a hypothetical, strained and curved nonpremixed

flame. The solid line represents the flame surface and the dashed line is the location of

ξ = 0.5, nominally the inflection point in the profile normal to the flame. The right half

of the figure shows the mixture fraction profile along the bold center normal. The two

halves of the figure illustrate the two terms in Eq. (5.7) and show that either term may

be positive or negative depending on the direction of curvature and the location of the

flame. Generally, we may expect the normal diffusion term to contribute to a negative

flame displacement velocity since the flame resides on the lean side of the inflection point

(where the second derivative of ξ is positive with respect to η). The curvature term

competes with, or complements, the normal diffusion term. In the figure, curvature is
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Figure 5.1. Schematic of a curved diffusion flame. The solid line represents the
stoichiometric surface and the dashed line the ξ = 0.5 surface.

positive and contributes to a negative flame displacement velocity, so that normal diffusion

and curvature tend to move the flame to the left toward the air stream. However, if the

curvature is reversed, at some point it will be sufficiently negative to overcome the normal

diffusion term, and the flame will move to the right toward the fuel stream. Qualitatively,

we can consider the rate of change of mixture fraction between the dashed and solid lines

as jsAs − jdAd. The flux and areas are higher at the dashed line than the solid line

(resulting in a net loss of ξ and motion to the left), but as curvature is reduced, the ratio

of the areas of the solid to dashed lines increases so that, for constant fluxes, there can

be a net gain of ξ, with motion of the iso-surfaces to the right.

Flame wrinkling is a clear mechanism by which soot (essentially convected with the

flow) is differentially transported towards or away from the flame. Convection through

the flame implies motion in the mixture fraction coordinate, to which temperature and

species concentrations are primarily tied. Thermophoretic diffusion will transport soot

down temperature gradients, away from the flame zone toward the fuel, so that, from the

point of view of the soot, the sum of soot convection and diffusion could be considered,

rather than just soot convection. The main observation, however, is that turbulent

motions themselves can alter the direction of flow through a flame, which can impact

soot concentrations.

In the following sections, results are also presented of quantities along directions

normal to the flame at a given instant in time. Flame normal directions are defined
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as above and computed as follows. Mixture fraction normal vectors are computed at all

grid points and interpolated to all intersections of the stoichiometric mixture fraction

with the grid lines. Points in the domain are then computed at regular distances (about

equal to the grid spacing) along the normal direction, and all field quantities linearly

are interpolated to these points. Normals are cropped at any point where the mixture

fraction profile becomes nonmonotonic.

5.4 Results

5.4.1 Overview and Observations

The simulation was computed to a time of 5 ms. Figure 5.2 shows instantaneous

snapshots of temperature, acetylene mass fraction, and soot mass fraction at times of

1.25, 2.5, 3.75, and 5 ms. In each series, only the interesting portion of the domain is

shown. The soot mass fraction range shown is 0 to 0.003 for clarity, but the peak values

are 0.0024, 0.008, 0.013, and 0.022 (or about 0.3, 1.0, 1.7, and 2.9 ppmv) in time. As time

progresses, the flame is wrinkled by the turbulence resulting in enhanced mixing of fuel

and oxidizer as the flame expands. In each figure, two isocontours of mixture fraction are

shown corresponding to the stoichiometric isocontour (ξ = 0.064) and the approximate

peak in the soot precursor/growth species acetylene (ξ = 0.2).

Of particular interest in these progressions is the motion of the stoichiometric contour.

In several regions, especially those with positive curvature, the flame is observed to move

away from the fuel side, reducing the curvature. In these regions, the curvature and

normal diffusion components of the flame ,displacement velocity in Eq. (5.7) are expected

to have the same sign, resulting in enhanced motion. In regions of negative curvature,

the curvature contribution results in displacement of the flame towards the fuel, while

the effect of normal diffusion is to displace the flame towards the oxidizer. This results

in a partial cancellation of flame motion effects and a more stagnant flame surface.

For the range of unsteady strain rates imposed by the initial velocity spectrum, local

extinction is negligible, and gaseous combustion timescales are small compared to flow

timescales. The temperature peak is concentrated around the stoichiometric mixture

fraction isocontour, while the acetylene peak follows the ξ = 0.2 isocontour. The spacing

of the mixture fraction isocontours is an indication of the local scalar dissipation rate.

Acetylene concentrations tend to be lower in regions of higher scalar dissipation rate. Peak

soot concentrations are not as tightly bound to the indicated isocontours as temperature
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T (300-2200 K) YC2H2 (0-0.085) Ysoot (0-0.003)

Figure 5.2. Vertical time series with indicated ranges (red is high). Times are 1.25, 2.5,
3.75, 5.0 ms. Isocontours are shown at ξ = 0.064, 0.2. Position units are millimeters.
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and acetylene mass fraction are. Initially, soot levels are confined near the ξ = 0.2 mixture

fraction isocontour, whereas at later times, high soot levels are observed in richer (and

leaner) regions. In particular, regions in Figure 5.2 in which the motion of the positively

curved flame essentially leaves the soot behind are observed. Along the flame, it is clear

that the soot concentration is not homogeneous but that the peak soot levels tend to

occur in regions of large negative flame curvature.

Figure 5.3 shows fields of soot number density, scalar dissipation rate, OH mass

fraction, and soot reaction rates of nucleation, growth and oxidation at a time of 2.5

ms. Corresponding temperature, acetylene and soot mass fraction are presented in the

second row of Figure 5.2. The number density field is similar to the soot mass fraction

Figure 5.3. Scalar fields with indicated peak scale (red) at 2.5 ms with mixture
fraction isocontours of 0.064, 0.2 (line color for clarity only). The peak soot nucleation,
growth, and oxidation rate peaks are off scale at 5.1×10−5, 0.036, and 0.143 kmol/m3s,
respectively.
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field. The peak levels occur in a similar location both along the flame and in the mixture

fraction bands at a given flame location. Number density is more evenly distributed along

the flame, however, as particles are generated solely by acetylene for the given soot model.

As soot is transported away from reaction zones, particle coagulation occurs, reducing the

number density and increasing particle size. Soot mass fraction levels are only affected

by number density through the implicit mean particle size, which affects the surface area

used in the rate calculation. Unlike number density, which is derived from the gas phase

alone, soot mass fraction has the additional source arising from surface growth, which

depends on the level of soot in the reaction zone. Thus, depending on soot transport into

or out of reaction zones, local soot mass fraction levels can be concentrated or diminished.

This effect is evident by comparing the number density and nucleation rate fields, and

the soot mass fraction and growth rate fields. The nucleation occurs all along the flame

resulting in a more homogeneous number density field, whereas the soot growth rate field

is concentrated along regions of negative flame curvature, just as the soot mass fraction is.

It is interesting to note that the soot oxidation rate also shows a high degree of variation

along the flame, with peaks in the same locations as the growth rate, indicating that

high levels of soot growth occur with high levels of soot oxidation. However, the location

of the rates in the mixture fraction coordinate are different, as expected, with oxidation

occurring at leaner mixture fractions than growth, though both are on the rich side of the

flame where soot is present. The peak soot oxidation zones occur where the soot levels

are at leaner mixture fractions. In these regions, the soot concentration is higher, and the

oxygen concentration at the location of soot is higher. Both of these effects enhance the

soot oxidation rate. Contours of oxygen concentration are not shown in the figure since

they are negligible at the stoichiometric surface. OH mass fraction contours are shown

to indicate the flame surface and reaction zone, and because OH is known to contribute

to soot oxidation.

In Figure 5.3, there appears (visually) to be a strong correlation between the soot

levels and rates and the flame curvature as well as scalar dissipation rate. These relations

are discussed further by considering global statistics and quantities along the flame.

5.4.2 Global Statistics

Figure 5.4 shows scatter plots of soot mass fraction at times of 1.75 and 5 ms and

temperature, acetylene, soot growth rate, and nucleation rate at times of 1.75 ms, all
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versus mixture fraction. The mean stoichiometric scalar dissipation rates at the two times

are 14.2 and 5.5 s−1, respectively (the steady extinction value is 148 s−1). The low degree

of scatter in temperature indicates that this flame is not highly strained and combustion

reactions are mixing limited. The soot mass fraction plots reveal two important effects.

First, the relatively slow soot growth and nucleation rates result in widely varying soot

mass fractions at any given mixture fraction so that the scatter plot appears dense below

its upper range. The soot mass fraction figure on the left at 1.75 ms has a scale five

times less than the same plot on the right at 5 ms. At 1.75 ms, the profile is rather

smooth, with a peak at approximately ξ = 0.15, which corresponds to the locations of

the maximum growth and nucleation rates. At 1500 K a soot mass fraction of 0.02, 0.01

and 0.002 corresponds to volume fractions of 2.6, 1.3 and 0.26 ppmv, respectively, with

the conversion given by fv = ρYs/ρs = 191030Ys/T ppmv, assuming a soot density of

1850 kg/m3 and a gas molecular weight of 29 kg/kmol at 1 atm pressure.

Second, the soot mass fraction is transported in the mixture fraction coordinate. In

time, the soot clearly migrates toward richer mixtures. The peak soot level is still at

approximately ξ = 0.15, but substantial levels of soot are present at mixture fractions

as high as 0.8. The scatter profile is also seen not to be smooth, but evidence of the

transport of soot to large values of mixture fraction along coherent structures is observed

as eddies convect soot away from flame zones into the fuel core where mixture fraction

diffusion increases the richness of the soot-gas mixture. The temperature, acetylene, and

rate profiles are shown at only one time since they are essentially the same at 5 ms, with

the exception that the acetylene mass fraction and soot growth rate peaks are nearly

twice as high, while the nucleation rate peaks at about 5× 10−5 kmol/m3s. Unlike soot

mass fraction, the soot growth and nucleation rate profiles are localized in the mixture

fraction coordinate. This localization of the soot rates is well known and is due to the

strong temperature dependence and locality of the gaseous species with respect to mixture

fraction.

5.4.3 Flame Displacement Velocity

Figures 5.2 and 5.3 clearly demonstrate the correlation between soot concentrations

and flame shape. The correlation is better understood by examining the displacement

velocity of the flame relative to the fluid motion given by Eq. (5.5). Figure 5.5 plot

(a) shows the stoichiometric flame displacement velocity relative to the fluid convective
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Figure 5.4. Scatter plots at 1.75 ms with soot mass fraction at 1.75 (left) and 5 ms
(right). The temperature plot shows one in three indices in the x and y directions.
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velocity as the two solid lines at 1.75 ms. Soot mass fraction is shown as grayscale

contours, with a peak value colored at 0.002 (dark). The peak soot mass fraction is

0.0045 (or 0.46 ppmv) and occurs along the lower flame at the far right of the figure.

Along the stoichiometric surface, fluid velocity vectors are shown. As discussed earlier,

positive values of the flame displacement velocity correspond to the flame moving towards

the fuel stream, while negative values denote flame motion towards the air stream. The

convective velocity through the flame is opposite the flame displacement velocity, and for

positive values soot will be convected into the flame. This figure shows that high soot

levels occur with flame motion towards the soot. Clearly the highest levels of soot occur

in positive regions of flame displacement velocity. History effects of transported soot are

also evident in the figure, though minimized by the early time chosen here.

This figure generally confirms the behavior that was described and predicted in Section

5.3. In relatively flat regions of the flame, the flame displacement velocity is negative

(towards air) since this is the direction (sign) of the normal diffusion term of the flame

displacement velocity shown in Eq. (5.7). Flame regions that are positively curved result

in even higher negative flame velocities, whereas flame regions that are negatively curved

are those with more positive flame displacement velocity. Figure 5.5 shows that fluid

vectors are not strictly tied to the direction of the flame displacement velocity. For

example, there are regions of opposite flame displacement velocity with the fluid normal

component pointing toward the air stream. This emphasizes the importance of the flame

motion relative to the local fluid velocity.

Plot (b) of Fig. 5.5 is the same as plot (a) but with the stoichiometric surface colored

by the scalar dissipation rate. As expected, the peak soot levels tend to occur in regions

of low χ. However, low levels of soot also occur in regions of low χ, especially where the

flame surface is positively curved, such as along the lower flame near the center and along

the upper flame at the left. In plot (a), for vξ, in the same regions, there appear to be

high concentrations of soot with negative values of vξ, contrary to the main correlation

of soot and vξ. The analysis is somewhat complicated by the history effects of the soot

evolution and the flame dynamics, which can change the magnitude of χ, and the sign of

κ. For example, the upper flame at the left shows a soot peak in a downward arch. The

flame curvature at this position changes sign as the flow evolves, with the initial curvature

centered in the fuel stream. This also occurs at the soot peak on the lower flame at the

right, which can be seen in the time progression in Fig. 5.2. As the flame displacement
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(a) (b)

Figure 5.5. Soot field at 1.75 ms with stoichiometric surface colored by flame displace-
ment velocity (a), and scalar dissipation rate (b). Vectors are fluid velocity. The soot
mass fraction is shown in grayscale where the maximum value shown (dark) is 0.002.

velocity accounts for the effects of both flame curvature and scalar dissipation rate (as

discussed previously and shown in Eq. (5.8)), it seems to be a better indicator of high

soot regions.

At the 1.75 ms time shown in Fig. 5.5, there appears to be relatively little flame-flame

interaction, with the flame structure varying from pure fuel to pure air across a given

location of the flame. This allows analyzing the flame in the context of more traditional

one-dimensional and flamelet models, to examine the importance of multidimensional

effects.

5.4.4 Flame Normals

The soot-flame interaction is examined in more detail by considering scalar profiles

of temperature, composition, and reaction rates along flame normals. Representative

individual results are presented at two spatial locations of opposite flame displacement

velocity at 1.75 ms in Fig. 5.6. Statistics considering all flame normals are presented later.

The positions of the two normals considered are labelled in Fig. 5.5. Positions 1 and 2

have flame displacement velocities of 90 and -100 cm/s, respectively. The stoichiometric

scalar dissipation rate values are approximately 3.5 s−1 and were chosen to be close in

magnitude. The peak temperatures for these two cases differ by only 25 K. Plots of
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Figure 5.6. Plots along two flame normals shown in Fig. 5.5. at 1.75 ms.

soot mass fraction, number density, acetylene mass fraction and soot rates of nucleation,

growth, and oxidation are shown versus mixture fraction in the figure.

The soot mass fraction profile is particularly interesting. At position 1, the flame

displacement velocity is positive, resulting in the flame moving toward the convected

soot particles. The opposite occurs at position 2, where the flame displacement velocity

is negative. The soot peak of position 1 has a value of 0.003, at a mixture fraction of

0.121 (φ = 2.0). At position 2, the soot mass fraction peak is 0.0006, at a mixture
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fraction of 0.254 (φ = 5.0). The soot level at position 1 is a factor of 5 higher than

at position 2 and peaks much leaner as well. The temperatures at the soot peaks for

positions 1 and 2 are 1898 and 1358 K, respectively, a difference of 540 K. This difference

in temperature, as well as soot level, strongly affects the soot contribution to the radiative

source term. Figure 5.7 shows the optically thin gas and soot radiative source terms at

the two positions. These terms are given by

Qrad = 4σK(T 4 − T 4
∞), (5.9)

where σ is the Steffan-Boltzmann constant, and K is the gas or soot absorption coefficient.

The ratio of the soot contribution to the optically thin radiative heat flux of position 1

to position 2 is 15 using values at the soot peaks. The gas radiation sources are similar

while the soot radiation is substantially higher at position 1, even exceeding the gas source

term. The total peak radiative transfer rate at position 1 is more than twice the total

peak rate at position 2.

The width of the soot peak at position 2 is also much wider than at position 1. As

the flame moves away from the soot, the soot peak is drawn out in mixture fraction,

resulting in the profile spanning ξ = 0.1− 0.6. Presumably, the soot peak at position 1 is

also stretched as the flame moves into the soot, but the soot is oxidized as it approaches
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Figure 5.7. Gas and soot optically thin radiative source terms along flame normals at
positions indicated in Fig. 5.5.
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the flame; hence the profile is limited. This motion in the mixture fraction coordinate

can only be explained by differential diffusion of the soot relative to the gaseous species

comprising the flame. A close look at the soot mass fraction and number density profiles at

position 2 shows a bimodal profile, consistent with production at lower mixture fractions

coupled with transport toward higher mixture fractions. The number density profile is

qualitatively similar to the soot mass fraction profile in its width and location. The

difference in magnitude of the two positions is not as severe for the number density as for

the soot mass fraction. This difference is similar to the difference in the nucleation rate

peaks, the values of which are dependent upon differences in the acetylene concentration

and temperature profiles. The shift in number density toward lower mixture fraction at

position 1 is contrasted with the similarity in the locations of the nucleation rate peaks,

which depend only on the gaseous environment, and further indicate the motion of the

flame towards the soot at position 1.

In contrast to the soot profiles at both locations, the locations and widths of the

profiles of the soot precursor, acetylene, as well as the soot nucleation and growth rate

profiles, are nearly constant. The soot oxidation rate is a factor of 100 higher at position

1 than at position 2 as the soot is convected toward the flame zone into regions of higher

oxidizer concentration.

Figure 5.6 shows profiles through two flame positions at a single point in time and

emphasizes the fact that the flame motion can result in peak soot levels very close to

the flame. Figure 5.2 shows the position of the soot peak relative to the mixture fraction

contours at four times. At position 1 in Fig. 5.6, values at the peak level of soot are shown

at times from 1 to 2.5 ms in Fig. 5.8. At later times the soot is oxidized by the flame, and

as the flame folds together, two vertical soot zones appear, making further comparison

difficult. As time progresses, the mixture fraction of peak soot decreases from 0.18 to

0.09, the temperature at peak soot increases from 1592 to 2139 K, and the soot volume

fraction increases from 0.1 to 0.44 ppmv. The corresponding mass fraction varies from

0.00087 to 0.0049. These results clearly show the unsteady motion of the stoichiometric

surface towards the soot peak as the flames evolve.

5.4.5 Soot-Flame Breakthrough

Soot-flame breakthrough is an important phenomenon and one that is not well un-

derstood. In fires, for example, large quantities of soot are commonly emitted, that can
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Figure 5.8. Soot concentration, temperature, and mixture fraction at the peak soot
level at times from 1 to 2.5 ms at the location corresponding to position 1 in Fig. 5.5.

absorb radiation and shield the surroundings from radiative heat transfer. Although the

flow timescales of direct numerical simulation are small compared to fires, DNS allows

detailed examination of soot-flame interactions. In the present simulation, soot was not

observed to penetrate the burning flame zone. However, in another simulation, similar to

the base case, but with a more vigorous turbulence field imposed, soot was found to break

through the flame. Figure 5.9 shows the soot and temperature profiles of this alternate

case at 1.14 ms. This case had a mean fluctuating velocity u′ = 300 cm/s, a turbulent

integral scale of L11 = 0.133 cm, and half the domain width at 1×3 cm. The parameters

of the baseline case are in Table 5.1. In the upper-right side of plot (a) the soot clearly

breaks through the flame. Plot (b) shows the temperature field, clearly indicating that

the flame is burning. There are regions in this flow for which the flame is quenched, as

evident along the central region of the upper flame. The soot mass fraction at the top of

the stream is 8.8× 10−5, with a corresponding volume fraction of 0.015 ppmv. The peak

soot mass fraction in the domain is 0.002 (0.2 ppmv) and occurs in the ball of soot at the

lower right of the figure. Soot also breaks through to the lean side of stoichiometric at

the central red cusp along the lower flame, but to a lesser extent at the time shown.

Consideration of soot-flame breakthrough calls into question the validity of the soot

oxidation model used. Figure 5.10 compares profiles of soot oxidation rate for three

oxidation reactions presented in reference [136]:
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(a) (b)

Figure 5.9. Alternate simulation results showing temperature (b) colored from 300 to
2200 K. Plot (a) corresponds to Fig. 5.5 showing the stoichiometric surface colored by
the flame displacement velocity, with a grayscale soot mass fraction field (black is 0.0002
or greater). The time is 1.14 ms. Note soot breakthrough at top left.

1
2
O2 + Csoot → CO (5.10)

OH + Csoot → CO +H (5.11)

O + Csoot → CO (5.12)

Rates for the reactions as given in [136]; taken from [5, 137, 138] are

RO2 = 10000e−19640/TT 1/2[O2]As, (5.13)

ROH = 106φOHT
−1/2XOHAs, (5.14)

RO = 55.4φOT
−1/2XOAs, (5.15)
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Figure 5.10. Plots of soot oxidation rates versus mixture fraction along a streamline
through the flame at the point of soot breakthrough in Fig. 5.9.

where φOH and φO are 0.13 and 0.5, X is mole fraction, and units are kilomole, meters,

seconds, Kelvin, giving rates in units of kilomole per cubic meter. As is the particle

surface area per volume given in Eq. (2.37). Figure 5.10 also shows the original Nagle–

Strickland-Constable O2 oxidation rate [139] by way of comparison, which is smaller than

the other rates.

The profiles in Fig. 5.10 are along a streamline through the point of soot breakthrough

at the upper right of Fig. 5.9 at 1.14 ms. In this case, the OH and the Leung and

Lindstedt (L&L) O2 oxidation rates are very similar in magnitude, shape, and position.

The O oxidation rate is similar in magnitude and width but occurs at a somewhat lower

mixture fraction, which is consistent with its mass fraction profile. The rate given for the

L&L O2 oxidation was used alone in the present DNS simulations. In [5] it was noted

that the oxidation rate constant for O2 oxidation was adjusted to match the maximum

surface oxidation rate for laminar, coflowing methane–air flames. Thus, effects of O and

OH oxidation would be partially built into the oxygen rate. If the L&L O2 rate is taken

as the sum of O2, O, and OH reactions, then there is a discrepancy of about a factor of 2:

either the L&L rate is too low, or the other rates (together) are too high. No attempt is

made here to provide a comprehensive treatment of soot oxidation, which is the subject

of ongoing research. Rather, the phenomenon of soot-flame breakthrough observed in
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the DNS calculations highlights an interesting, and potentially important mechanism for

soot emission from flames. The quantitative results of the soot breakthrough in the

DNS are subject to uncertainties in the soot growth and oxidation model, as noted, and

also the representation of the particle size distribution, which, while common, is limited

in the present, two-moment (i.e., monodispersed) approach. This model will tend to

underestimate soot surface area and, hence, soot reactivity.

It is worth emphasizing that the soot breakthrough computed here is different from

what would be expected in larger-scale flames and fires. In those situations, increased

flow residence times result in higher soot concentrations, hence increased radiative heat

losses and flame-chemistry interactions. In the present simulations, while the soot is

fully coupled to the gaseous composition and energy flow fields, the soot concentration

and residence times are too small to have a substantial impact on the temperature and

composition of the flames. A soot concentration of 1 ppmv corresponds to about 5% of the

local fuel carbon. Soot breakthrough was shown here to be possible in a configuration for

which soot breakthrough is not favorable. In real situations, as soot passes through

a flame, the flame temperature will decrease due to radiative losses, and be further

weakened, possibly to the point of extinction (allowing substantial soot emission), as

flame radicals are consumed by oxidation of soot. Furthermore, higher soot concentrations

occur with larger particle sizes, so the soot area-to-mass ratio will be lower, reducing soot

reactivity per unit mass and tending to increase the amount of soot breakthrough.

5.4.6 Normal Statistics

Figure 5.6 showed scalar profiles along two selected normals. To further clarify the

flame-soot interaction and structure, flame normal profiles were computed all along the

stoichiometric mixture fraction surface. Along a flame normal, the point of intersection of

the normal with the flame and the point of peak soot mass fraction, Y ∗soot are of particular

interest. Figure 5.11 shows values of the mixture fraction and temperature at peak

soot (denoted ξ∗ and T ∗, respectively) along the normal versus the stoichiometric flame

displacement velocity vξ. These plots show a clear correlation between the location of the

peak soot in the mixture fraction coordinate and the flame displacement velocity. Where

vξ is shifted towards positive values through negative flame curvature, the peak soot

occurs at lower mixture fraction, closer to the flame, hence at a higher temperature where

reaction and radiative rates are higher. Higher values of vξ tend to occur in regions of
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(a) (b)

(c) (d)

Figure 5.11. Scatter plots along flame normals at 1.75 ms. Starred symbols correspond
to values at peak soot mass fraction along flame normals. Solid lines are a moving average
of the data with a window size 1/10th the domain of the data.

negative flame curvature. In these regions, the effect of thermophoresis is to focus the soot,

increasing soot concentrations. However, it is shown below that thermophoretic effects

are relatively small, and elevated soot concentrations are dominated by the proximity of

the soot and flame.

While there are not a lot of data points at the highest levels of the flame velocity,

the ξ∗ data appear to be levelling off there. This is consistent with the soot reaching an

oxidation barrier near the flame surface. The presence of soot breakthrough would show

up in the presence of soot at mixture fractions below stoichiometric (0.064).

The plot of peak soot mass fraction versus ξ∗ in the figure shows a strong correlation
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between the level of soot and the location of the soot in the mixture fraction coordinate,

with a spread of a factor of 22 in soot mass fraction with peak levels ranging from mixture

fractions of 0.1 to 0.45. Hence, at higher vξ, plots (a) and (b) show that the peak soot

is closer to the flame and at a higher temperature, while plot (c) shows that the soot

concentration is higher when the peak mixture fraction is lower. In plot (d), the Y ∗soot is

shown versus vξ, which is essentially a combination of plots (a) and (c). Here, the data

show more scatter, and the correlation of peak soot concentration along a flame normal

with the flame displacement velocity is not as obvious, although the soot concentration

is higher at higher flame velocity. However, plot (d) is also correlating two spatially

segregated points along a flame normal, where the soot concentration grows in time.

Regions of positive and negative vξ are conceptually similar to normal and inverse coflow

diffusion flames, respectively. These results are consistent with experimental observations

of lower soot concentrations in inverse diffusion flames than normal diffusion flames [12].

Although not shown here, the peak soot mass fraction is observed to be correlated

as expected with the two terms of the flame displacement velocity equation, and not

just their sum. That is, Y ∗soot is highest in regions of low scalar dissipation rate and

more negative flame curvature. Low scalar dissipation rates, alone, imply higher flame

temperatures and longer residence times for soot nucleation and growth reactions. Neg-

ative flame curvatures, in addition to shifting the relative flame motion towards the fuel

(resulting in soot at lower mixture fractions with higher temperatures), will increase the

temperature in the fuel-rich soot growth area through thermal focusing, further promoting

soot growth. The low degree of scatter in the temperature-mixture fraction plot of Fig.

5.4 (about 100 K), compared with the strong dependence of temperature at peak soot

in Fig. 5.11, shows that any thermal focusing effects are secondary to curvature-induced

flame motion. The relatively low degree of scatter in the temperature plot of Fig. 5.4

includes the relatively strong effects of the full range of scalar dissipation rates. A similar

plot of temperature versus mixture fraction conditional on scalar dissipation rate would

show a smaller temperature variation associated with effects such as thermal focusing.

Figure 5.11 also indicates the distribution of the flame displacement velocity, with

most of the data having negative values of velocity. Figure 5.12 plot (a) shows the PDF

of vξ at 1.75 ms. The mean vξ is -45.7 cm/s and the standard deviation is 42.9 cm/s, and

13% of the velocity data are at positive velocity. The mean vξ is negative since the normal

diffusion component is negative (see Eq. (5.7)) while the mean of the flame curvature is



142

nearly zero, as shown in Fig. 5.12 plot (b). The standard deviation of the flame curvature

PDF is 6.6 cm−1.

The flame displacement velocity vξ has been used to correlate the flame-soot inter-

action. This quantity is made up of curvature and normal diffusion terms as shown in

Eq. (5.7). The relative importance of these terms is shown in Fig. 5.13. In the figure, a

scatter plot of the curvature (first) term in Eq. (5.7), plot (a), is compared to the normal

diffusion term, plot (b), versus vξ. The strong relation between the flame curvature term

and vξ indicates the importance of this term, especially near the extrema of the range

of vξ. The highest and lowest values of flame displacement velocity occur with low and

high values of flame curvature. The normal diffusion term is restricted in magnitude to

smaller values than the range of the curvature term for this flame, but in general we can

see that both terms are of similar magnitude, which has been previously observed [74].

The normal diffusion term is negative over nearly all of the flame, consistent with the

stoichiometric mixture fraction being on the lean side of the inflection point in Fig. 5.1.

It is well known from one-dimensional studies that soot levels are reduced as strain rate

increases due to lower formation times and reduced flame temperatures, e.g., [124]. The

scalar dissipation rate is related to the flame displacement velocity through the normal

diffusion term since higher mixture fraction gradients give rise to both higher normal

diffusion and higher dissipation rate. The lower two images of Fig. 5.13 show the two

terms of vξ versus the scalar dissipation rate. The mean curvature is defined above as

the divergence of the mixture fraction iso-surface normal vector field, so as a normal with
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Figure 5.12. PDFs of relative flame displacement velocity vξ and flame curvature at
1.75 ms.
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unity magnitude, we would not expect much relation to the scalar dissipation rate. Figure

5.13, however, shows that the magnitude of the curvature term is small at high scalar

dissipation rates, consistent with the known fluid mechanical effect of mixture fraction

iso-contours aligning with the strain field, which should reduce flame curvature in regions

of high strain. The correlation of the normal diffusion term with the scalar dissipation

rate is strong, with higher dissipation rate resulting in more negative flame displacement

velocity.
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Figure 5.13. Scatter plots of curvature and normal diffusion components of vξ versus vξ

and χ at 1.75 ms. Solid lines are moving average of data with a window size 1/10th the
domain of the data.
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5.4.7 Temporal Evolution of Mean Flame Quantities

Figure 5.14 shows the flame surface area-weighted mean and standard deviation of

flame quantities as a function of time. The flame displacement velocity, soot mass fraction

and mixture fraction at peak soot along normals, and stoichiometric scalar dissipation

rate are shown, as well as the relative flame surface area and the fraction of flame area with

positive flame displacement velocity. The maximum number of flame normals considered

was 3789. The initial transient, as evident in the vξ and χ profiles, is observed at times less

than about 0.4 ms in which the strained flame relaxes and turbulence begins to wrinkle

the flame.

An obvious anomaly is observed in the flame displacement velocity profile at a time

just under 3 ms in which the flame displacement velocity spikes downwards. This is

observed in part because of the limited size of the simulation providing a limited amount

of flame area. This negative spike occurs as two flame sheets merge and quickly propagate

under the influence of a strong positive curvature, leaving a faint trail of soot in its wake.

In Fig. 5.2, this flame motion occurs at the flame cusp along the upper flame sheet at

the far left of the domain and corresponds to the sharp drop in the relative flame surface

area profile shown in Fig. 5.14.

The mean flame displacement velocity, shown in the upper left plot of Fig. 5.14,

is negative at all times but decays in magnitude as the turbulence field decays and

scalar gradients relax diffusively. A mean velocity away from the fuel core (in the

mixture fraction coordinate) is expected initially, but for a finite fuel core surrounded

by air, eventually the stoichiometric flame surface will move inward toward the center

and disappear as the air stream diffuses into the fuel stream. So eventually, the mean

flame displacement velocity has to become positive. The fraction (based on flame points)

of flame displacement velocity greater than zero increases in time, as does the flame

displacement velocity, and varies from 0-15% but is in the range of 10-15% for most of

the simulation.

The mean stoichiometric scalar dissipation rate decays continuously from a value of

29 to 5.5 s−1, with the initial transient rapidly reducing the dissipation rate to 16 s−1

at 0.4 ms. The mean of Y ∗soot along flame normals increases continuously from zero to

0.0033 (fv ≈ 0.35 ppmv). The mean of ξ∗ along flame normals is initially quite lean–at

the location of peak production. As time passes, soot thermophoretically diffuses towards

higher mixture fractions and the flame on average is moving away from the soot, resulting
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Figure 5.14. Time average quantities and standard deviations along the flame or along
flame normals in the case of soot mass fraction and mixture fraction at peak soot.

in the mean peak soot mixture fraction initially increasing with time. A peak is reached

near the middle of the simulation after which the mean peak mixture fraction appears

to level off and decrease slightly. So, soot is produced at low ξ, moves toward higher ξ

under thermophoresis and negative flame displacement velocity, and levels off/decreases

as the flame displacement velocity magnitude and flame gradients (e.g., temperature)

are reduced while the soot formation region is relatively constant (as shown below) at

ξ ≈ 0.15.
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The standard deviation of the flame and flame normal data are given along with

means in Fig. 5.14 and are of similar magnitude as the mean quantity, though plotted on

a separate scale for clarity. The mean flame curvature is approximately zero throughout

the simulation, but the mean curvature magnitude increases from zero to a maximum

of 4.9 cm−1 at about 1 ms, and decays to values between 3.5 and 4 at times above 2.5

ms. The standard deviation of flame curvature rises to a fairly constant value of about 6

cm−1 at 1 ms.

The relative flame surface area varies over a range of about a factor of 2 in the

simulation. Initially the flame area increases, reaches a maximum at 2.85 ms, and then

decays as turbulence decays and flame curvature is reduced. This is about the same point

as the mean peak in ξ∗ in time.

5.4.8 Temporal Evolution of Total Soot and Radiation

Of interest in the present discussion of the interaction between flame and soot is

the overall amount of soot that resides in regions of negative curvature and positive

flame displacement velocity. Weighted PDFs of curvature and mixture fraction isocontour

displacement velocities were computed throughout the flow field (not just at the flame

surface or along flame normals). The PDFs were weighted by ρYs, soot growth rate, and

the soot radiative source term. For example, the PDF of vξ, weighting with ρYs, is

PρY s(vξ) =
< ρYs|vξ > P (vξ)

< ρYs >
. (5.16)

This expression would be a Favre (density) average if ρ were used in place of ρYs.

Physically, PρY s(vξ)dvξ is the fraction of soot mass in the domain that is in the range vξ

to vξ + dvξ, where, in this section, vξ is at any mixture fraction, not just stoichiometric.

Figure 5.15 shows PρY s at 1.75 ms in plot (a). The shaded region is one minus the

cumulative PDF and represents the total fraction of soot that has positive vξ. This

quantity is shown as a function of time in plot (b) for the cumulative PDFs of vξ, and

also curvature κ (again, for any ξ surface), weighted by ρYs, volumetric soot growth rate,

and soot radiative source term. Here F denotes a cumulative weighted PDF. From plot

(b), we see that up to 30% of the radiative source term occurs at positive vξ, while nearly

70% resides in regions of negative κ. We expect a significant portion of the radiative

source term to reside in positive vξ and negative κ, since the soot temperature is higher

there and the radiative source is nonlinear with temperature. A significant fraction (up
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Figure 5.15. PDF of vξ weighted by ρYs (a) with one minus the cumulative PDF shown
shaded, at 1.75 ms. Plot (b) is the temporal evolution of the cumulative weighted PDF.
The upper curves are PDFs of κ and the lower curves are PDFs of vξ. Individual curves
are PDFs weighted by the indicated quantities.

to 20%) of the total soot resides in regions of positive vξ. As noted previously, vξ is

initially negative in the domain, as reflected by the lower set of curves. That we do not

have higher fractions of radiation and soot mass in regions of positive vξ is a reflection of

the relatively small portion of the domain with positive vξ. However, the critical value

of vξ = 0 used here is somewhat arbitrary since vξ can be positive or negative depending

on the competition between the curvature and normal diffusion components, and soot is

shifted towards the flame for all negative curvature. Even though the fraction of soot

mass and radiative source in positive vξ and negative κ are not overwhelming, they are

still significant and occur through multidimensional effects that are not captured in most

standard models that neglect these effects.

5.4.9 Soot Transport

Soot transport is due to thermophoretic diffusion and fluid convection. The impor-

tance of these terms in relation to the flame motion is depicted in Fig. 5.16. The

upper two plots show profiles through the two normals listed in Fig. 5.5, similar to Fig.

5.6. Each plot contains the flame displacement velocity, the normal component of the

thermophoretic diffusion velocity, Vthm, and normal, Vc,n, and in-plane, Vc,t, components

of the convective velocity. The in-plane convection is always positive since there is no

directionality associated with it. The normal velocities are components in the direction of
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Figure 5.16. Profiles of flame displacement velocity, the normal component of ther-
mophoretic diffusion velocity, and normal and in-plane components of convective velocity
through two flame normals at the positions in Fig. 5.5 (a) and (b). Figures (c) and (d)
show scatter plots of normal thermophoretic diffusion and flame displacement velocity
versus mixture fraction (skipping ever other point in the x and y directions for clarity).
The simulation time is 1.75 ms.

the local mixture fraction gradient. The thermophoretic velocity is multiplied by a factor

of 10, which, on the current plots shows that its value is about an order of magnitude

below both the fluid convection and flame velocities. For this reason, the soot has been

considered to be largely convected with the fluid. The thermophoretic velocity is similar

at both positions and has values ranging from -10 to 10 cm/s over the whole mixture

fraction range (the velocity is defined even where there is no soot) but has values of 6.8
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and 4.5 cm/s at ξ = 0.2 at positions 1 and 2, respectively. These values are in agreement

with those found by Kang et al. [129]. The in-plane component of the thermophoretic

diffusion velocity is less than 5% of the normal component and is ignored.

The normal and in-plane components of flow velocity are of similar magnitude at these

two positions. This is important because (ignoring the flame displacement velocity), soot

is convected as much toward or away from a flame as along a flame. If the curvature scales

are of similar magnitude relative to the mixture fraction gradients, multidimensional

effects will affect the soot history as the soot passes through the flow field. Also observe

that in this flame, the flame displacement velocity is of a similar magnitude as the

convective velocities, with values ranging from 0 to 100 and 0 to -200 cm/s at positions

1 and 2, respectively.

The lower two images of Fig. 5.16 show scatter plots of the flame displacement

velocity and thermophoretic velocity versus the mixture fraction. Here again the flame

displacement velocity tends to dominate the thermophoretic velocity for the interesting

mixture fraction range from 0.1 to 0.4, above which the two velocities are comparable.

5.5 Discussion

The previous results have concentrated on the location of soot in the mixture fraction

coordinate and the dependence of this locality on the dynamics of the soot-flame interac-

tion. As noted previously, the location of soot determines its temperature and quantity,

both of which impact soot yield and radiative heat transfer. A practical importance of

understanding soot-flame interactions, which DNS alone can provide, arises through the

need for turbulence-chemistry closures for RANS and LES models. Soot modeling in these

contexts has been a challenge because of its complex chemistry, particle size distribution,

optically thick radiative heat transfer, and long reaction timescales implying long history

effects that must somehow be tracked through a flame.

Transporting detailed chemistry in CFD is usually too expensive and subgrid reaction

models are often used to simplify the chemical description. Fox provides a good review

of models for turbulent reacting flow [23]. A common approach that is illustrative of

important modeling issues and that has been widely applied to modeling sooting turbulent

flames is the steady laminar flamelet model and its variations [26], which was introduced

in Chapter 1.

Soot modeling has provided a challenge since, as shown in Fig. 5.4, soot does not have
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a clean one-to-one state relationship with mixture fraction that is often observed in other

quantities such as temperature. This has been shown here to be due to both the unsteady

reaction of soot and the differential transport. These effects must be properly accounted

for in order to obtain an accurate representation of soot. Differential diffusion of soot is

usually handled by assigning a large Lewis number to the soot species or by accounting

for the thermophoretic diffusion, which, for flamelets solved in mixture fraction space,

requires a treatment such as that given in [140]. The unsteady effects have been accounted

for by transporting one or more soot moments at the grid level and computing the soot

rates normalized by the soot quantity in the subgrid model [28]. Pitsch et al. used an

unsteady flamelet model to capture the soot timescale and correlated the flamelet time to

the spatial location in a turbulent jet flame to account for the unsteady soot growth [30].

Flamelet models as well as stochastic models such as the Linear Eddy Model rely

on a one-dimensional description of the flame zone. In this chapter, it is shown that

multidimensional effects can significantly impact the interaction between the soot and the

flame, through flame shape and displacement velocity. Consequently, one-dimensional

descriptions are not adequate for flames with significant multidimensional effects. To

properly account for variable flame velocity effects in one-dimensional models, a correction

would have to be applied for the differential soot transport. To this end, Van Kalmthout

and Veynante have modeled the mean flame displacement velocity in nonsooting turbulent

nonpremixed flames in terms of the mean flame curvature and the normal diffusion

component written in terms of the solution of an unsteady unstrained flame solution [74].

It has been shown here that soot breakthrough in a flame is possible, though only

small concentrations are observed in the DNS simulation due to the relatively short

simulation time. Soot-flame breakthrough is an important problem in large-scale fires

where large amounts of soot can be present on the outside (air side) of a flame, resulting

in shielding of radiative heat transfer to the surroundings. Modeling this process is

important if simulations are to yield correct heat transfer rates. However, the fundamental

mechanisms for how soot can be formed in fuel-rich regions and end up on the outside

of a fire without first being oxidized are not fully understood. Although the time and

length scales of DNS cannot approach those of fires, DNS is currently the only tool

available for detailed examination of soot-flame interactions and may lend insight into

soot breakthrough and other phenomena. For example, we have here observed the motion

of soot towards higher and higher mixture fractions as time progresses. In flames with
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long timescales, downstream flames will likely exist between air and soot-loaded fuel that

may increase the possibility of soot breaking through a burning flame and may result in

flame quenching through a combination of strain and radiative heat loss, allowing soot

to escape to colder fuel-lean regions.

The semiempirical soot mechanism employed in this work was chosen as a reasonable

compromise between complexity, computational cost, and existing uncertainty in soot

modeling, as discussed above. The mechanism does not include detailed soot chemistry

involving combustion intermediates such as OH and H radicals. Soot growth and reaction

steps are written in terms of acetylene, whereas soot nucleation is known to occur where

PAH concentrations are high. Physical phenomena such as these will affect the location

of the soot reactivity and may be expected to alter the soot concentrations and locations

within the flame zone. However, the primary result of this chapter is that differential

diffusion between soot and the mixture fraction directly shifts the soot into or out of the

bulk flame zone. The soot reactivity depends not only on gaseous species concentrations,

which are largely tied to the reactive flame zone, but also on the soot concentration in

those reaction zones. In this chapter, it was shown that differential diffusion of soot

results in soot transport over nearly the full span of mixture fraction. Hence, while the

details of the soot mechanism will have an impact on soot concentrations, one would still

expect to see higher soot concentrations in regions of more positive vξ.

Computational costs have dictated the DNS run time of 5 ms used. However, the

soot-flame interaction results of this work should be similar under turbulent conditions

at longer times. We have noted that soot growth timescales are longer than those

typical of combustion reactions but that local (to single flame sheets) turbulent soot-flame

interactions occur over shorter timescales than those based on global flow quantities (like

timescales derived from jet exit velocities and location of peak mean soot concentrations).

At longer times, one would expect higher levels of soot due to slower mixing rates

of the decaying turbulence, as well as history effects as soot grows almost indefinitely

given a hot, rich environment. However, the important velocities discussed (convection,

thermophoretic, and flame displacement) depend on the soot concentration only indirectly

through the temperature, density, and gas composition fields, so similar behavior under

similar turbulent conditions at higher soot levels may be expected.

The simulations presented here are two-dimensional, and attention is focused on soot-

flame interactions in flames wrinkled by turbulence, rather than on turbulent statistics,
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which are not available in the present simulation. However, as the primary interest is in

real turbulent flames, from which DNS can lend insight, the degree to which the results

of this work will to carry over to three-dimensional turbulence is important. The flame

displacement velocity has been used to quantify the soot-flame interaction. This velocity

arises from flame curvature and normal diffusion (i.e., flame strain). Qualitatively, three-

dimensional turbulence will curve and strain a flame sheet as has been shown in the

present simulation. Quantitatively, the relative importance of the curvature and strain

terms in Eq. (5.7) may vary. However, it was shown in the present simulation that both

terms are important, and examination of Eq. (5.7) shows that the curvature and normal

diffusion terms both scale inversely with the lengthscale associated with mixture fraction

gradients and so should stay in proportion as Reynolds number changes. Of course, the

analysis is conditioned on the extent to which combustion is fast enough to maintain

a coherent flame sheet. The behavior of soot transport and flame dynamics in three

dimensions is studied in Chapter 6.



CHAPTER 6

THREE-DIMENSIONAL ETHYLENE

JET SIMULATION

Chapter 5 presented results of a detailed study of flame dynamics and soot-flame

interactions in two-dimensional decaying turbulence. The results highlighted the im-

portance of multidimensional effects of flame curvature and differential diffusion of the

flames. In this chapter, the flame dynamics analysis is extended to three dimensions.

These results represent the first extension of DNS to turbulent, sooting, nonpremixed

flames with realistic combustion chemistry, in three dimensions. The transport of soot in

the mixture fraction coordinate is of primary interest. The flame displacement velocity,

discussed in Chapter 5, is considered here, and statistics of this velocity as well as its

component terms are presented. The results presented here support those found in the

two-dimensional simulations. However, unlike the two-dimensional decaying turbulence

simulation, significant bulk mixing of the fuel and oxidizer streams occurs, which impacts

soot transport in the mixture fraction coordinate.

As in the two-dimensional DNS, the soot model is based on that of Leung and

Lindstedt [5], which has been used extensively in simulations of turbulent sooting flames.

The model is semiempirical and consists of four steps: nucleation, growth, oxidation, and

coagulation. Acetylene is the gaseous species through which soot nucleation and surface

growth occurs. Soot oxidation occurs in a global reaction with O2, with effects of oxidation

via species such as OH and O partially built into the rate. Although more complex soot

chemistry models are available, such as the HACA mechanism [9], the present mechanism

has been widely and successfully used in nonpremixed combustion and is considered

adequate for the present purposes in which soot is introduced to three-dimensional DNS.

The soot particle size distribution (PSD) is modeled using the method of moments,

in which the first three mass-moments of the PSD are transported. The derivation of the

moment transport equations results in fractional moments in the chemical source terms

that are closed using an assumed-shape lognormal distribution [105]. This assumption
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was compared with quadrature closures [107] using four and six moments in Chapter 2

with good agreement between the models for the first two moments. The soot model is

fully integrated into the gas phase mechanism by accounting for mass and energy transfer

between the gas and soot phases. Soot particles are small enough that they do not impact

the fluid momentum (the Stokes number is much less than unity) and are convected with

the flow. Soot diffusion occurs primarily via thermophoresis as given by

jMr = −0.554Mr
ν

T
∇T, (6.1)

where Mr is the rth soot moment, T is temperature, ν is kinematic viscosity, and j is the

diffusion flux. Soot particles have a high molecular weight, and Brownian diffusion, while

implemented [94], is insignificant [103, 30].

Soot and gaseous radiation is accounted for using an optically thin model as before.

However, radiative effects are negligible for the domain size, run time, and soot concen-

trations of the simulation.

6.1 Initial Conditions and Configuration

The simulation consists of a temporally evolving, nonpremixed, planar ethylene jet

flame. In the temporally evolving jet configuration, the domain is periodic in the stream-

wise direction, and fluid exits the domain only through the cross-stream boundaries due

to flame expansion. Time in a temporal jet is the analog of axial position in a typical

jet flame. A major difference between these two cases is that, whereas a spatial jet

continually spreads in the axial direction the temporal jet is statistically homogeneous in

the streamwise direction and spreads in time.

The initial configuration is very similar to the two-dimensional decaying turbulence

configuration of Chapter 5, except for the addition of a periodic spanwise direction, and

a mean velocity field. A layer of fuel in the domain center is surrounded by oxidizer.

The fuel slab extends to the full range of the streamwise and spanwise directions, which

are periodic. The cross-stream boundaries are open, with nonreflecting outflow boundary

conditions [85]. The mean flow is one-dimensional in the cross-stream direction, and

pressure is constant at 1 atm. The fuel and oxidizer streams are given equal and

opposite velocities. This configuration is optimal for model development because it

is representative of shear-driven turbulent flows, maximizes the residence time of the
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fluid in the domain (for soot growth), and provides two homogeneous flow directions for

turbulence statistics.

Physical parameters characterizing the simulation are presented in Table 6.1. The

configuration was designed to balance competing computational costs associated with grid

resolution (number of grid cells), total computational run time (which dictates the number

of time steps and the soot reaction time), domain size (maximize Reynolds number and

turbulence-flame interactions), and flame extinction (to be minimized). The fuel core

width, H, is 1.8 mm, and the difference in velocity streams, ∆U is 82 m/s, giving a jet

Reynolds number of 3700, based on the kinematic viscosity of the fuel stream. While

the Reynolds number of the present flow is moderate, it is in the range of values studied

in nonreacting, turbulent slot-jet experiments [141]. The simulation was run for 50 jet

times, τj , defined by H and ∆U . The size of the domain is 16H × 11H × 6H in the

streamwise, cross-stream, and spanwise directions, respectively. A grid size of 30 µm is

used in each direction, giving 228 million computational grid cells. The simulation is well

resolved for the mass, momentum, energy, and chemical species fields, with a minimum

of 10 grid points across the thinnest radical species structures (i.e., a peak in the profile

of a cross-stream cut). The soot moment fields are less well resolved with most of the

thin structures containing at least five points.

The fuel core velocity is perturbed with three-dimensional isotropic, homogeneous

turbulence intended to trip instabilities in the shear layers between the fuel and the

oxidizer streams. The turbulence was initialized with u′/∆U = 4%, and H/L11 = 3,

where u′/∆U is the turbulence intensity and L11 is the integral lengthscale. These

parameters are used to define the velocity field satisfying the Passot-Pouquet turbulence

kinetic energy spectrum presented in Chapter 5. In three dimensions, the factor 32/3 in

Eq. (5.2) is replaced with 16, the factor 10 in Eq. (5.3) is replaced with 15, and the

factor 8/3 is removed from Eq. (5.4).

Table 6.1. Temporal ethylene jet simulation parameters.

H (mm) 1.8 Lx/H 16 τjet 0.022
∆U (m/s) 82 Ly/H 11 τrun/τjet 50
Rejet 3700 Lz/H 6 # Cells (millions) 228
u′/∆U (init) 4% ∆x (µm) 30 Sim. Cost (million CPU-hr) 1.5
H/L11 (init) 3 δξ (mm) 0.8
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The chemical composition of the flowfield was initialized as described in Chapter 3.

The pure stream composition is given as composition 3 in Table 2.3. The stoichiometric

mixture fraction is 0.25. The increased ξst of 0.25, compared to 0.064 for pure fuel and

air streams, increases the steady, stoichiometric, extinction scalar dissipation rate from

311 to 2554 s−1 and moves the flame location closer to the turbulent shear layer. The

stream temperatures were both preheated to 550 K. Preheating serves to make the flame

more robust towards extinction and reduces the density ratio between the burned and

unburnt mixtures from 8.0 (with streams at 300 K) to 4.6. The lower density ratio and

more robust flame provide a greater degree of flame-turbulence interaction than would

otherwise be possible under the time and spatial resolution constraints of the DNS.

The simulation was performed on the Redstorm supercomputer at Sandia National

Laboratories using 7,920 processors at a computational cost of 1.5 million CPU-hours.

6.2 Results

The DNS results are presented in terms of

1. conditional statistics of gaseous combustion and soot scalars,

2. transport of soot relative to the flame in terms of the flame displacement velocity

relative to convection, where the component terms of this velocity are quantified,

3. the relative importance of the thermophoretic diffusion velocity.

6.2.1 Overview

Figure 6.1 presents contour plots of temperature and soot mass fraction at t = 50τj

for which significant development and mixing of the jet have occurred. At this time, the

soot concentration is at its maximum and has undergone substantial flame and turbulence

interactions. On the right are spanwise cuts corresponding to a plane in the streamwise

and cross-stream directions with the initial fuel velocity moving towards the right and

the surrounding counterflowing oxidizer streams moving towards the left. On the left are

axial cuts showing the cross-stream and spanwise directions. As the simulation progresses

in time, the turbulent shear layers develop and the jet spreads outwards in the cross-

stream direction. The flame location also spreads outwards, as expansion associated with

combustion pushes fluid out of the domain. This figure illustrates the flow configuration

and global flame characteristics. There is very little flame extinction occurring, although
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Figure 6.1. Isocontours of temperature (top) and Ysoot (bottom) at t = 50τj for
streamwise and spanwise cutting planes. The stoichiometric mixture fraction isocontour
is shown in the spanwise cut. The peak Ysoot is off scale at 4.5× 10−4, located at x=0.72
cm in the central region.
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the flame is highly strained in the braid regions between large-scale vortex structures. A

key observation is the difference in the small-scale structure of the temperature field and

the soot field. The temperature field is much more diffuse than the soot mass fraction

field. All of the soot moments are qualitatively similar in appearance to the soot mass

fraction (M1 = ρYsoot). The soot diffusivity occurs primarily via thermophoresis and

results in very thin structures. Soot is formed and grows on the fuel-rich side of the

flame surface. Turbulent eddies strain the soot and convect it into the jet core where

it mixes with combustion products and fuel. As discussed below, in the jet core region,

the local mixture fraction surrounding the soot increases, while soot temperature and

reaction rates are reduced.

6.2.2 Conditional Means and Scatter

The combustion and flow characteristics of the ethylene jet are quantified in Figure

6.2. This figure presents scatter data from the DNS at t = 50τj , as well as the conditional

(on mixture fraction) mean and conditional standard deviation as a function of mixture

fraction. The soot mass is not included in the calculation of the mixture fraction as

the soot concentration is small compared to local elemental carbon concentrations. The

figure presents temperature, scalar dissipation rate, OH mass fraction (indicative of the

flame zone and reactivity), and acetylene (the soot precursor) mass fraction.

At earlier times, the results are qualitatively similar to those at t = 50τj , with the

exception that some flame extinction appears in the scatter plots of temperature and OH

mass fraction at points significantly below the conditional mean. The conditional mean

is not significantly affected by extinction, however, as the extent of the flame extinction

is small. The peak flame extinction is 12% at 25τj . The level of extinction is computed as

the fraction of the stoichiometric mixture fraction iso-surface with YOH < 0.0015, which

is half the steady laminar extinction value.

At t = 50τj , the fuel core has mixed out somewhat and the data extend to mixture

fractions just below 0.8. The temperature peak occurs rich of the stoichiometric mixture

fraction, at ξst = 0.3, whereas the YOH peak is at a location slightly lean of stoichiometric.

This behavior is consistent with the one-dimensional laminar flame structures. The

acetylene concentration peaks at ξ = 0.5, which approximately coincides with the peak in

χ. This peak will reduce the concentration of soot obtained in the simulation as a higher

χ corresponds to a lower residence time for reaction.

The temperature and mass fraction plots in Fig. 6.2 show a strong state relationship
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Figure 6.2. Scatter plots of combustion and flow quantities with conditional means and
conditional standard deviations at t = 50τj .

between a given variable and the mixture fraction. This relationship is indicated by values

of the standard deviation about an order of magnitude lower than corresponding values

of the conditional means.

Figure 6.3 presents scatter data, conditional means, and conditional standard devia-

tions of the soot moments, and the net chemical source terms of the soot moments. The

soot species exhibit distinct behavior from the gaseous species. The conditional scatter

in the soot moments is much broader. Hence, the standard deviations of the moments

are of the same order of magnitude as the conditional mean. This is in contrast with the

gaseous species concentrations, where the conditional standard deviations are an order of

magnitude lower than the conditional means. It is widely known that soot moments do

not have a simple state relationship with mixture fraction [13]. Here, the same result is

observed, which is the source of great difficulty in modeling turbulent sooting flames. In

the previous, two-dimensional DNS, this was shown to be due to the combined effects of
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Figure 6.3. Scatter plots of soot quantities with conditional means (solid lines) and
signed conditional standard deviations (dashed lines) at t = 50τj .
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unsteady soot growth and strong differential diffusion in the mixture fraction coordinate.

Evidence for this is shown by comparing the soot moments to their respective reaction

rates. The nucleation rate depends only on gaseous species and has similar characteristics,

e.g., a relatively low σ. The rates for the second and third moments, while fixed in the

mixture fraction coordinate, show much greater scatter, consistent with their dependence

upon the soot moments. The crossover from negative to positive reaction rate occurs

fuel-rich of ξst at ξ = 0.33 as the soot transitions from being consumed in oxidizing

regions to being formed in growth regions as the mixture fraction is increased. This

position is the approximate upper limit in ξ of O2.

The soot moments span the full range of the mixture fraction domain at mixture

fraction values fuel-rich of ξst, whereas the soot rates vanish at approximately ξ = 0.6.

The only possible mechanism for this is differential diffusion between soot and mixture

fraction. This behavior is somewhat masked at t = 50τj since the maximum mixture

fraction is below unity. Moreover, due to nitrogen dilution in the fuel core, ξst = 0.25

is much higher than in systems with combustion between pure ethylene and air ξst =

0.064. These two effects render the relative motion between the soot and mixture fraction

somewhat obscured as indicated by scatter plots. The relative motion was more readily

observed in the earlier two-dimensional simulation where there was less mixing of the fuel

and oxidizer streams. In the present simulation, at t = 25τj , the peak mixture fraction

is near unity and the soot moments extend to this upper bound, whereas the soot rates

are limited to the regions of mixture fraction shown in Fig. 6.3.

On the lean side of ξst, the second two moments are observed to be very small due to

the oxidation barrier presented by the flame. The number density (M0) experiences no

such barrier since its only sink is coagulation. For M0, the extent to which differential

diffusion between soot and mixture fraction results in soot transported to lean regions is

seen. It is possible that, were the soot mass fraction high enough that oxidation could

not fully consume the soot as it is transported past a reactive flame region, substantial

quantities of soot could appear at mixture fraction values fuel-lean of ξst. This process of

soot-flame breakthrough or, at least, soot-ξst breakthrough in the event of flame quenching

may be important in describing soot emissions as previously discussed. In large-scale fires,

a substantial quantity of soot is observed to escape the flames where smoke emission occurs

along with radiative shielding [142]. Modeling this process is important for performing

predictive simulations of heat transfer in and around fires.
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6.2.2.1 Scalar Dissipation Rate

The scalar dissipation rate is an important quantity in turbulent nonpremixed flames

as it determines the rate of mixing between fuel and oxidizer and the combustion heat

release rate. The inverse of the scalar dissipation rate is a mixing timescale. In the

following presentation, the scalar dissipation rate is directly related to the component of

the flame displacement velocity representing diffusion of isosurfaces of mixture fraction

in the isosurface-normal direction, relative to convection. Here, statistics of the scalar

dissipation rate are first presented.

Figure 6.4 shows the PDF of log10 χ at t = 50τj . The data are shown on linear

and log scales and have been centered and normalized to give a mean and standard

deviation of zero and unity, respectively. The values of 〈log10 χ〉 and σlog10 χ are 1.41,

and 0.744, respectively. The data are conditioned on mixture fraction between 0.02 and

0.98 to minimize possible bias associated with the pure streams. The DNS data are

shown as symbols and a Gaussian distribution (in log10 χ) is shown as the solid line. The

Gaussian distribution has the same first two moments as the DNS data. The DNS data

are observed to be very nearly lognormal, with a slight negative skewness. These results
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Figure 6.4. Centered and normalized PDF of log10 χ at t = 50τj on linear and log scales.
Symbols are data conditioned on 0.02 < ξ < 0.98. Solid lines are a Gaussian distribution
with the same first two moments as the DNS data.
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are in agreement with those previously reported experimentally [141] and in DNS of a

similar configuration in an extinction-reignition study of CO-H2 fuel [81]. Although the

jet Reynolds number of the present simulation is not large, the turbulence is sufficient to

yield a lognormal PDF of the scalar dissipation rate with a wide range of values.

The conditional mean and standard deviation, along with instantaneous scatter data,

are shown in Fig. 6.2 for the scalar dissipation rate at t = 50τj . Consistent with

experimental observations, the standard deviation of the scalar dissipation rate is observed

to be higher than the conditional mean value [27]. Though partially obscured by the

logarithmic scale, the conditional mean χ has a dip in the vicinity of the stoichiometric

point. This has been previously observed experimentally [143] and in DNS [79] and

is consistent with effects of flow divergence through gas expansion from the flame and

increased kinematic viscosity (reduced local Re) in the flame zone.

The evolution of the conditional mean scalar dissipation rate is shown in Fig. 6.5. As

the jet evolves, the peak scalar dissipation rate decreases continuously. In addition, as

fuel and oxidizer mix, the peak mixture fraction in the fuel core decreases. The mixture

fraction value of the peak scalar dissipation rate is indicated in the figure by the vertical

lines. The mixture fraction of peak 〈χ|ξ〉 becomes progressively lower as the jet evolves.
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Figure 6.5. Conditional mean scalar dissipation rate versus mixture fraction at five
times. Vertical lines indicate the location of peak conditional scalar dissipation rate.
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At t = 23τj the peak 〈χ|ξ〉 occurs at a mixture fraction of approximately 0.4, which

coincides with the peak soot mass concentration and reaction rate shown in Fig. 6.3. At

earlier times, the mixture fraction of peak 〈χ|ξ〉 is rich of ξ = 0.4, and at later times,

the peak is lean of this value. In a turbulent flow, on average, fluid elements that are

rich of the peak 〈χ|ξ〉 will become leaner, and fluid elements that are lean of the peak

〈χ|ξ〉 will become richer. Hence, as the mixture fraction of peak 〈χ|ξ〉 crosses ξ = 0.4

(where soot production peaks), we expect transport in the mixture fraction coordinate

to be nonmonotonic, with soot transported to higher then lower mixture fractions as the

jet evolves. This behavior is shown in the following section.

6.2.3 Mixture Fraction PDF and Soot Transport

The transport of soot in the mixture fraction coordinate is important since this affects

the soot concentrations through chemical reactivity, as well as the temperature of the

soot, which directly affects radiative emission rates. Figure 6.6 presents density-weighted

(Favre) and soot mass density-weighted, probability density functions of mixture fraction.

In Fig. 6.6 plots (a) and (b), respectively, Pρ is the fraction of mass per unit mixture

fraction at a given mixture fraction, while PρYs is the fraction of the total soot mass per

unit mixture fraction, at a given mixture fraction. These weighted PDFs are defined in

Eq. (5.16):
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fraction at evenly spaced times.
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Pφ =
〈φ|ξ〉P (ξ)

〈φ〉
, (6.2)

where φ is the weighting variable (ρ, or ρYs). Figure 6.6 plot (a) has the general shape

of a β-PDF. At early times, the mixture fraction is partitioned mainly between pure fuel

and oxidizer (mostly oxidizer). As the jet evolves, the fuel stream mixes out and the

upper bound migrates towards leaner mixture fraction. At t = 50τj , the peak mixture

fraction is just below 0.8, and the peak in the PDF is just above 0.5, which corresponds

with the location of the peak acetylene mass fraction, shown in Fig. 6.2.

Figure 6.6 plot (b) is more interesting. The plot has an approximate Gaussian shape,

but with a noticeable positive skewness, i.e., a tail towards the fuel stream. As the jet

evolves, the PDF first widens and subsequently contracts. This is a consequence of two

competing effects:

1. Differential diffusion between soot and mixture fraction, as evidenced by the soot

locality outside of the mixture fraction bounds of the soot reaction rates (see Fig.

6.3). This differential diffusion occurs due to the dynamics between mixing of soot

and isocontours of mixture fraction.

2. As fuel and oxidizer mix together, the fuel core is diluted and the upper bound of

mixture fraction decreases in time.

Hence, while differential diffusion of soot and mixture fraction tends to spread soot in the

mixture fraction coordinate, the upper bound on the mixture fraction is becoming smaller

as gas mixing occurs. Time in the present simulation is the analogue of axial position in

a nonpremixed jet flame. If the present simulation were continued to longer time, one

would expect the peak in the mixture fraction PDF to approach the stoichiometric value

and eventually mix to the oxidizer free-stream composition. The soot would be squeezed

towards the flame zone until soot oxidation (and possibly some emission) occurs.

Soot is essentially convected with the fluid, and the rate of motion of isocontours

of mixture fraction relative to fluid convection gives the motion of soot with respect to

mixture fraction. This motion can be of either positive or negative sign, as was previously

demonstrated in Chapter 5 by examining the so-called flame displacement velocity vξ.

This quantity is elaborated on below for the present three-dimensional simulation. Unlike

the present case, in the two-dimensional DNS, the peak mixture fraction did not decrease

substantially below unity, and bulk mixing of the fuel zone was not observed.
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Figure 6.7 highlights the location and width of PρYs in ξ that was presented in Fig.

6.6. Here, the cumulative soot mass-weighted PDF of mixture fraction is considered:

F (ξ) =
∫ ξ

0
PρYs(η)dη, (6.3)

where η is an integration variable for ξ. The solid line in Fig. 6.7 is the value of F (ξ = 0.5)

and is the fraction of the total soot mass below a mixture fraction of 0.5. This value starts

at over 90% and decreases to below 50% as the soot is transported towards richer ξ. The

curve then reaches its minimum point just above 40% at 14τj . At approximately 23τj ,

the curve rises sharply and increases to approximately 70% at 50τj as the fuel stream is

mixed out and the peak mixture fraction decreases. In Fig. 6.5 23τj corresponds to the

time at which the peak 〈χ|ξ〉 crosses ξ = 0.4, which is where the conditional mean soot

mass and soot mass rate exhibit maxima.

The dashed curve in Fig. 6.7 indicates the motion of PρYs . This curve represents the

location in the mixture fraction coordinate of the median soot mass. The dashed curve

is qualitatively the inverse of F (ξ = 0.5) and shows that the location of the median soot
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Figure 6.7. Plot of the cumulative soot mass density-weighted PDF of mixture fraction
evaluated at ξ = 0.5 (solid line). The dashed line shows the mixture fraction location
where the same cumulative PDF has a value of 0.5.
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mass starts out lean at a mixture fraction of about ξ = 0.4. The mixture fraction at

F (ξ) = 0.5 then increases in time to ξ = 0.53, where it peaks at about the same time as

the minimum in F (ξ = 0.5), after which it decreases monotonically to ξ = 0.45.

6.2.4 Mixture Fraction Dynamics and
Soot-Flame Diffusion

The soot transport in the mixture fraction coordinate via differential diffusion between

soot and the gaseous species is examined as in Chapter 5 by consideration of the flame

displacement velocity vξ, given in Eqs. (5.7) and (5.8) and repeated here:

vξ = −Dξ∇ · n− 1
ρ|∇ξ|

∂

∂η

(
ρDξ

∂ξ

∂η

)
, (6.4)

= −Dξ∇ · n−
Dξ

2
∂

∂η
ln (ρ2Dξχ/2). (6.5)

In the two-dimensional analysis, it was found that the curvature term is either positive

or negative with a mean near zero, while the normal diffusion term is primarily negative

since the flame exists between pure streams at a low value of the mixture fraction, such

that a diffusive relaxation of the flame tends to move the flame towards the oxidizer

stream. In other words, the second derivative of the mixture fraction profile in the η

coordinate was almost exclusively positive. Here, ξst is much higher, hence closer to the

inflection point in the ξ profile. This, together with the decreasing upper bound on ξ,

through bulk fuel-oxidizer mixing, results in the normal diffusion term taking on both

positive and negative values, as shown below.

The terms in Eq. (6.4) dictate the sign, magnitude, and origin of vξ, which determine

whether soot is locally convected into or away from the flame zone. In the two-dimensional

analysis, it was found that both terms are of similar magnitude. Here, we extend the

analysis to three dimensions.

Figure 6.8 presents the stoichiometric isosurface colored by vξ at six times along with

grayscale isocontours of the soot mass fraction. The scales in the figure vary with time. At

early times, there is a strong positive correlation between the soot concentration and the

magnitude and sign of vξ. Regions of positive vξ correspond to the flame moving towards

the fuel stream relative to convection. In these regions, the soot is locally convected

towards the flame zone where its temperature is higher and the soot is more reactive, as

observed in Chapter 5. There the turbulence was decaying, the Reynolds number was
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t = 5τj t = 32τj

t = 14τj t = 41τj

t = 23τj t = 50τj

Figure 6.8. Ysoot (grayscale, black is high value) and stoichiometric isosurface colored
by vξ. The scales vary: with increasing time the peak Ysoot scale is 1 × 10−5, 1 × 10−5,
4 × 10−5, 5 × 10−5 10 × 10−5, and 15 × 10−5. The length dimension is millimeters. At
41τj two additional mixture fraction isocontours, 0.15 and 0.35, are shown.
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smaller, and the soot was not strongly convected away from the flame zone. Here at 14τj ,

spanwise coherent structures associated with the Kelvin-Helmholtz shear instability are

evident, which convectively transport soot away from the flame zone, as was discussed in

Chapter 4. These strong transport and history effects complicate the analysis. Ideally, a

Lagrangian description of the soot would record the full history, especially the reactive

history, of the soot. As it is, soot is formed and grows in reactive zones near the flame.

Subsequently, turbulence transports the soot away from the flame where mixing increases

the local mixture fraction surrounding the soot, hence reducing the soot temperature and

growth rate, but soot remains to be strained and diluted by the flow. The soot structures

persist even as the turbulent energy decays, serving as an example of Gibson’s so-called

fossil turbulence [144].

At later times, e.g., t = 41τj , there are regions of high vξ for which the soot concentra-

tion appears to be very small. There are two possible reasons for this. One is simply that

the thickness of the colored stoichiometric surface obscures a high concentration of soot

beneath it. This occurs, for example, at t = 41τj on the right of the upper flame sheet at

point “A”. More importantly, the flame sheet is wrinkled with a curvature that changes

sign and, hence, can change the sign of vξ. Therefore, soot may be formed preferentially

in a region of positive vξ, which subsequently changes sign through flame curvature, but

leaves a higher concentration of soot in its wake.

At t = 41τj , mixture fraction isocontours at 0.15 and 0.35 are also shown. In some

regions, soot appears to be absent “far” from the flame but these regions, in fact, coincide

with the spacing of the mixture fraction contours. That is, the soot is not “far” from

the flame in the mixture fraction coordinate, since extensive strain rate in the upstream

portions of the spanwise rollers separates the mixture fraction isocontours. From Fig.

6.3, the crossover between production and destruction of M1 = ρYs occurs at ξ = 0.33,

which accounts for the low soot mass between these isocontours.

6.2.5 The Flame Displacement Velocity and Its Terms

The stoichiometric mixture fraction probability density functions of vξ and its con-

stituent terms at three times corresponding to 5τj , 23τj , and 41τj are presented in Fig.

6.9. In the figure, CRV and ND denote the curvature and normal diffusion terms,

respectively, on the right-hand side of Eq. (6.4). These PDFs are area-weighted on

the stoichiometric surface extracted from the mixture fraction field. The scale of the
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terms in the figure indicates that both terms of vξ are of similar magnitudes. These

terms are of either positive or negative sign, although the normal diffusion term and vξ

are negatively biased. Positive values of the curvature term, normal diffusion term, and

vξ correspond to convection through the flame from the fuel side to the oxidizer side

or, relative to convection, positive values of these terms correspond to diffusion of the

ξst isosurface towards the fuel stream. The converse is true for negative values of these

quantities.

The normal diffusion term is observed from Fig. 6.9 to have a negative skewness. As

noted previously, in the absence of curvature, in an ideal diffusion flame with ξst . 0.5,

the mixture fraction profile through the flame will have a positive second derivative for

which diffusive relaxation will move the flame towards the oxidizer. This effect is less

strong as ξst increases towards the inflection point (at which point the sign changes and

the diffusive relaxation causes flame motion towards the fuel side). Conversely, as the jet

evolves, the maximum mixture fraction decays due to mixing, and the inflection point in

the mixture fraction profile moves towards the stoichiometric surface. This results in an

increased portion of the flame existing with a positive normal diffusion term, hence a more

positive vξ. The effect of the terms on the stoichiometric probability density function of

vξ is also shown in Fig. 6.9. vξ is always biased to negative values, as expected, due to the

small mean of the curvature term and the negative bias of the normal diffusion term. As

the jet evolves, however, this bias is reduced and the fraction of positive vξ increases from

22.8% at 5τj to 49.1% at 50τj . Table 6.2 shows the fraction of the stoichiometric surface

for which the curvature term, normal diffusion term, and vξ are positive at six times in

the simulation. The fraction of positive curvature term shows little variation, while the

fraction of positive normal diffusion term and vξ have similar values and steadily increase

in time.

The fact that vξ is significantly positive is important from a modeling perspective be-

cause it means that multidimensional effects associated with flame curvature and mixing

effects associated with normal diffusion can result in a diffusion flame that moves (relative

to convection) in both the fuel and oxidizer directions with nearly equal frequency. Posi-

tive vξ is the opposite of what occurs in canonical opposed jet diffusion flames of similar

stream compositions. Although these effects may play a small role in the combustion gas

dynamics, they are shown to play a strong role in soot formation and radiative processes

in the two-dimensional simulations in Chapter 5. Here, it is demonstrated that similar



172

Table 6.2. Positive fraction of stoichiometric surface quantities.

Time (τj) vξ Curvature Term Normal Diffusion Term
5 0.228 0.558 0.254
14 0.235 0.632 0.228
23 0.291 0.636 0.248
32 0.412 0.594 0.395
41 0.427 0.588 0.402
50 0.491 0.580 0.492

flame dynamics are observed in both two- and three-dimensional turbulence.

Figure 6.10 presents the area-weighted stoichiometric mean and standard deviation

of vξ, and the curvature and normal diffusion terms, as a function of time. The mean

curvature term is nearly zero, but its standard deviation is significant. The difference

between the mean vξ and mean normal diffusion term is the mean curvature term, which

is small. Hence, the mean vξ closely follows the mean normal diffusion term. The mean

vξ and normal diffusion terms are negative for the extent of the simulation, up to 50τj .

However, the mean normal diffusion term at first decreases to a minimum of -200 cm/s
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deviations, σ, (bold lines) of vξ and its constituent terms.
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at 16τj but then increases steadily to -14 cm/s at 50τj . The minimum curvature term is

-10 cm/s at 23 τj .

The standard deviation of the normal diffusion term is approximately twice that of the

curvature term in the first quarter of the simulation, after which the discrepancy in the

standard deviations becomes smaller. The standard deviation of the normal diffusion term

is comparable to its mean value over the first half of the simulation. The combination of

the location of the mean and the magnitude of the standard deviation indicates the extent

to which the curvature and normal diffusion terms contribute to positive and negative vξ.

More detailed insight into the relationship between the various terms considered

is obtained from the correlation coefficient. The stoichiometric correlation coefficient

between pairs of terms is shown in Fig. 6.11. The correlation coefficient is defined as

ρX,Y =
〈XY 〉 − 〈X〉〈Y 〉

σXσY
, (6.6)

where X and Y denote the variables of the correlation. The correlation between vξ and

the normal diffusion term is strongly positive, having a value above 0.83 throughout the

simulation, as the diffusive velocity of the stoichiometric mixture fraction iso-surface is
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directly influenced by turbulent straining in the flame-normal direction. The correlation

coefficient of vξ and the curvature term is not as large as for vξ and the normal diffusion

term. A positive correlation for vξ and the curvature corresponds to the flame moving

(relative to convection) towards the fuel stream when the center of curvature is in the

fuel stream. The correlation is initially negative as the jet develops, then increases

continuously throughout the simulation. This rise in ρvξ, CRV is consistent with the

increasing importance of the curvature term to vξ, compared with the normal diffusion

term, indicated by comparing their means and standard deviations in Fig. 6.10. Except

for an initial transient, the magnitude of the correlation coefficient between the curvature

and normal diffusion terms directly is less than 0.33 throughout the simulation. The

values of ρvξ,CRV and ρvξ,ND are higher than ρCRV,ND because the former two quantities

include the correlation of the curvature and normal diffusion terms with themselves.

As noted, the mean curvature term in vξ is slightly negative throughout the simulation.

However, the mean curvature, κ, of the stoichiometric surface is nearly zero. This

difference is due to the temperature dependence of Dξ and the location of ξst. When the

flame has a negative curvature, χst tends to be higher than when the flame has a positive

curvature. These higher χst with negative curvature result in a lower flame temperature

and a lower Dξ. The χ-κ relation at ξst results from the bias towards extensive strain

of ξ . 0.5ξmax with negative curvature. The correlation coefficient between κ and χ on

the stoichiometric mixture fraction surface increases from -0.5 at 5τj , to -0.08 at 50τj .

Initially, the stoichiometric mixture fraction is 0.25, and the peak mixture fraction is unity.

At 50τj , the peak in the mixture fraction PDF occurs at ξ = 0.5. The peak in 〈χ|ξ〉 occurs

at ξ = 0.5 and ξ = 0.35 at t = 0 and t = 50τj , respectively. Hence, the magnitude of

the correlation coefficient between curvature and scalar dissipation rate decreases as the

position of the peak of 〈χ|ξ〉 approaches the stoichiometric mixture fraction.

6.2.6 Thermophoretic Diffusion Velocity

The conditional mean thermophoretic diffusion velocity 〈vT |ξ〉 and flame displacement

velocity 〈vξ|ξ〉 at four times are presented in Fig. 6.12. Here, vξ refers to the velocity

at a given mixture fraction and not the stoichiometric surface. The scale of 〈vT |ξ〉 is a

factor of 10 lower than the scale of 〈vξ|ξ〉, while the curves are of similar magnitude on

the scale given. Hence, the thermophoretic velocity is much smaller than the differential

diffusion velocity between the gas and the soot fields. The relatively low thermophoretic
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Figure 6.12. Conditional mean thermophoretic velocity (bold lines), and mixture
fraction displacement velocity (thin lines) at four times.

diffusion velocity reinforces the presumption that soot is essentially convected with the

flow field and that soot-mixture fraction transport may be quantified using vξ.

The curves of conditional mean vξ cross from negative to positive value close to ξ = 0.5

at the times shown. Hence, isocontours of mixture fraction above ξ ≈ 0.5 are moving

towards the fuel stream or, in other words, towards the jet center, and isocontours of

mixture fraction below ξ ≈ 0.5 are moving towards the oxidizer stream as the jet spreads.

As the jet evolves and mixing occurs, the crossover mixture fraction shifts towards smaller

mixture fraction. In the negative vξ regions, the magnitude of vξ first increases, then

decreases in time, whereas the magnitude of the positive regions increases with time. The

value of vξ approaches zero as ξ approaches zero, that is, as the free oxidizer stream is

approached. At the upper bound of ξ, the velocity is positive as the highest ξ isocontours

move towards the jet center region, then merge, and are annihilated as oxidizer mixes

into the core.

6.3 Discussion

The present simulation provides not only insight into soot formation and transport

processes, but a database by which models of turbulent soot formation may be developed
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and quantitatively validated.

The unsteady growth of soot that overlaps convective and diffusive timescales and the

transport of soot in the mixture fraction coordinate are difficult problems in modeling

soot formation in turbulent flames. The conditional moment closure (CMC) model solves

unsteady transport equations for reactive scalars conditionally averaged on the mixture

fraction [31]. CMC formulations have been developed that allow for differential diffusion

of reactive scalars [145, 31, 146], and CMC modeling of turbulent sooting flames has

been successfully applied [32]. In CMC, accurate modeling of transport of conditionally

averaged scalars in the mixture fraction coordinate is important. In the conservation-form

of the CMC formulation of Hewson et al. [146], the quantity |∇ξ|vξ appears directly in

the differential diffusion term of the conditional mean transport equation for the soot

moments. Here, |∇ξ|vξ has units of inverse seconds, or mixture fraction per second, and

represents a diffusion velocity in the mixture fraction coordinate. Hence, the relative

mixture fraction displacement velocity vξ has direct relevance to practical models of

turbulent soot formation. An a-priori study of a CMC model is presented in Chapter 7.

This simulation represents a first step towards providing a detailed view of soot

formation and transport in a turbulent flow, and as such, several concessions were made to

limit computational costs. In order to resolve the time and lengthscales of the simulation

with a fixed computational cost, the simulation time was limited to 1.1 ms. This relatively

short duration, combined with the relatively high velocity of the jet and the increased

stoichiometric mixture fraction, results in lower soot concentrations. The peak soot

concentration observed in the present simulation is fv,peak = 0.03, which is comparable

to experimental values in methane flames [147]. In larger-scale configurations (e.g., fires),

longer residence times occur for soot growth and radiative heat transfer, with significantly

stronger soot-flame interactions expected. However, the basic interactions between soot

and the flame due to differential transport influenced by the flame dynamics are expected

to remain.

The present simulation describes the early-to-intermediate stages of the jet develop-

ment and mixing. Near the end of the simulation, the (rich) peak of the mixture fraction

PDF has mixed towards lower ξ and overlaps with the peak of the conditional mean soot

mass fraction. In the process, the soot is being forced towards leaner mixture fraction,

where oxidation will eventually occur. An important extension to the present work is the

simulation of the latter portion of the jet mixing in which soot is transported fully into
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the flame and burned out. Computational costs to reach this state from a developing

jet as performed here are currently prohibitive. However, an initial condition could be

constructed such that the entirety of the resultant jet development proceeds in the desired

regime of jet mixing (e.g., from the desired intermediate jet composition and Reynolds

number).



CHAPTER 7

FLAMELET AND CMC MODELING

Approaches for modeling turbulent combustion were presented previously in Chapter

1. When considering soot formation in modeling, care must be taken to account for

features unique to the soot formation process, specifically, the longer soot formation

timescales and the differential transport between soot and gaseous species. In this chapter,

two models are considered: (1) the laminar flamelet model, and (2) the conditional

moment closure model (CMC). Soot formation is introduced into the laminar flamelet

model, and solutions and properties of the model are explored. The CMC model is

evaluated using the DNS data in an a-priori fashion. That is, the DNS data are used to

evaluate terms in the CMC equations. Here, the focus for both models considered is the

transport of soot in the mixture fraction coordinate.

7.1 Laminar Flamelets with Soot

The laminar flamelet model has been introduced in Chapter 1 and was used to in

initiale the DNS simulations. Discussion has been made on the limitations of the model,

namely, that multidimensional effects are not accounted for. An important assumption

in the derivation of the classic flamelet equations is that of unity Lewis numbers for all

species. That is, all species are assumed to have the same diffusivity, equal to the thermal

diffusivity.

The unity Lewis number constraint may be relaxed by dividing the diffusivity ap-

pearing in Eq. (1.11) by the species Lewis number. However, doing this does not

conserve mass, as is readily evident by summing the equation over all species. Pitsch

and Peters [140] have developed a flamelet formulation that treats differential species

diffusion consistently and accurately. In their derivation, rather than define the mixture

fraction as the local mass fraction of material that originated in the fuel stream (or in

terms of centered and scaled linear combinations of conserved scalars), they define the

mixture fraction in terms of a transport equation (here in one dimension):
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ρ
∂ξ

∂t
+ ρv

∂ξ

∂y
− ∂

∂y

(
ρDξ

∂ξ

∂y

)
= 0. (7.1)

This mixture fraction loses its strict physical interpretation as defined in terms of linear

combinations of conserved scalars (e.g., elemental mass fractions) in the absence of unity

Lewis numbers and becomes simply a parameterizing variable.

Allowance for general transport in the flamelet coordinate is important for soot

formation since soot has a very small (if not negligible) gradient-based diffusivity due to

its large molecular weight, along with a substantial thermophoretic diffusion mechanism.

7.1.1 Soot Flamelet Formulation

The flamelet implementation of soot is as follows. Gaseous species are assumed to

have unity Lewis numbers for convenience and the one-dimensional transport equation for

soot is converted to a flamelet equation in mixture fraction space. The one-dimensional

soot moment transport equation is given by

ρ
∂mr

∂t
+ ρv

∂mr

∂y
− ∂

∂y

(
ρDp

∂mr

∂y

)
− ∂

∂y

(
0.554µ
T

mr
∂T

∂y

)
− Ṁr = 0. (7.2)

Here, mr is the rth soot mass-moment divided by total (gas+soot) density, Dp is the soot

particle diffusivity (assumed constant), µ is viscosity, and Ṁr is the moment source term.

The soot diffusion term (term 3) is neglected from the outset. This equation is converted

to mixture fraction space using the coordinate transformation rules

∂

∂t
→ ∂

∂t
+
∂ξ

∂t

∂

∂ξ
, (7.3)

∂

∂y
→ ∂ξ

∂y

∂

∂ξ
. (7.4)

This transformation follows from taking derivatives of φ = φ(t, ξ(t, y)). Applying the

transformation to (7.2) gives

ρ
∂mr

∂t
+ ρ
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∂t

∂mr

∂ξ
+ ρv

∂ξ

∂y

∂mr
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− ∂ξ
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∂

∂ξ

(
0.554µ
T

mr
∂ξ
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∂T

∂ξ

)
− Ṁr = 0. (7.5)

Now, the following term is added and subtracted: ∂m
∂ξ

∂
∂y

(
ρDξ

∂ξ
∂y

)
. Regrouping yields
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Using Eq. (7.1), the term in brackets cancels (note the cancellation of the convective

term). Applying the transformation rules again to the physical space derivatives and

rearranging gives

ρ
∂mr
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= −∂m
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+ Ṁr. (7.7)

In this equation, the definition of χ in Eq. (1.12) is used to close the ∂ξ
∂y terms:

∂ξ

∂y
=
√

χ

2Dξ
, (7.8)

which is denoted β. Equation (7.7) can be massaged into the following form convenient

for numerical solution:

∂mr

∂t
= C

∂mr

∂ξ
+ S; (7.9)

C =
[
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This equation emphasizes that the soot moment flamelet equation is hyperbolic, with C

taking the place of a velocity and S a source term. Casting the equations in this form

allows proper (stable) discretization for numerical solution. The present approach is to

use central differences on all derivatives appearing in brackets and upwind differencing on

the convective derivative, using the sign of the coefficient C to determine whether to use

and upwind or downwind derivative. If it is desired to keep the gaseous diffusion term in

Eq. (7.2), it can be incorporated as follows. First, apply the transformation ∂
∂y = β ∂

∂ξ to

the spatial derivatives and then apply the chain rule to obtain

1
ρ

∂

∂y

(
ρDξ

Les

∂mr

∂y

)
=

χ

2Les
∂2mr

∂ξ2
+

β

ρLes

∂mr

∂ξ

∂(ρDξβ)
∂ξ

, (7.10)
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where, in the first term, Eq. (7.8) has been used, as well as assuming Dp = Dξ/Les. This

term can be added directly to Eq. (7.9) as term D, recognizing that the second term

will contribute to the convective term in Eq. (7.9) and be small compared to the other

convective terms, so it is neglected and a diffusion term would be given by

D =
χ

2Les
∂2mr

∂ξ2
. (7.11)

Soot Lewis numbers are large as noted in Chapter 5 and the diffusion term can be safely

neglected.

7.1.2 Results and Discussion

Figure 7.1 shows results of a flamelet calculation with soot. The soot model is that

of Leung and Lindstedt [5], with two transported soot moments (soot mass fraction and

number density). The results are at steady state using a detailed ethylene mechanism

with 70 species and 463 reactions [95]. The flamelet equations represent an opposed

jet flow with air and fuel at mixture fractions of zero and one, respectively. The scalar

dissipation rate profile is given by Eq. (3.2), and plotted in Fig. 3.1. This dissipation

profile corresponds to a cold opposed jet with the stagnation plane at the center. Thus, in

the flamelet solution, the flame is located on the air side of the stagnation plane, and fluid

streamlines are directed towards the stagnation plane through the flame. Soot is formed
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Figure 7.1. Steady flamelet soot mass fraction and number density profiles for a
maximum χ of 100 s−1 using the Leung and Lindstedt soot model and detailed ethylene
chemistry.
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on the rich side of the flame sheet and is primarily convected towards the stagnation plane.

The thermophoretic diffusion velocity transports soot down the temperature gradient, in

the direction of the stagnation plane at ξ = 0.5. However, since the negative temperature

gradient persists past the fluid stagnation plane, soot is able to be transported beyond the

stagnation plane where the particles stagnate at the so-called particle stagnation plane.

Physically, this position occurs where the convective velocity or wind, coefficient C in

Eq. (7.9), becomes zero. Figure 7.2 shows the velocity profiles C, with and without the

thermophoretic velocity. Without the thermophoretic velocity, C crosses zero at ξ = 0.5,

as expected.

The peak in the number density curve in Fig. 7.1 shows the location in the mixture

fraction coordinate of the soot nucleation. As the soot diffuses and convects to higher

mixture fractions, the number density decreases due to coagulation and a reduced nu-

cleation rate corresponding to low temperatures away from the flame. The soot mass

fraction begins low near the point of nucleation and rises to a broad plateau as soot

growth occurs along with transport. At the particle stagnation plane, both profiles drop

abruptly to zero.

Figure 7.3 compares the soot mass fraction at χmax = 100 s−1 with diffusion via

thermophoresis and with Brownian diffusion with a unity Lewis number given as in Eq.

(1.11). Flamelet approaches that treat soot without thermophoretic diffusion but with the
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Figure 7.2. Soot flamelet equation convective wind with and without thermophoretic
diffusion for χmax = 100 s−1.
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usual transport are qualitatively different. Most notably, no particle stagnation plane is

observed and the soot mass fraction profile peaks near ξ = 0.2 and decays approximately

linearly to zero at the fuel stream. Oxidation prevents the soot from similar uniform

decay from the peak toward the air stream at f = 0, and the soot is confined to the rich

side of the flame where the oxidizer concentration (in this case oxygen) decays to zero.

The Le = 1 case allows soot at much leaner mixture fractions than the normal case. The

soot level is also lower for the Le = 1 case since formation rates compete with higher

diffusion rates. At higher Lewis numbers, the soot profile is qualitatively the same but

with a larger magnitude.

At higher scalar dissipation rates, the soot levels are reduced as higher dissipation

rate implies higher transport of soot (convection) away from the flame zone, hence lower

residence times for the relatively slow soot growth rate to form soot. This effect is shown

in Figure 7.4, where the peak soot drops by three orders of magnitude for χmax ranging

from 50 to 1500 s−1, the latter being the limit of flame extinction.

Remarkably, the particle stagnation plane does not shift noticeably in the mixture

fraction coordinate with increasing maximum scalar dissipation rate. This was unex-

pected since a higher dissipation rate implies a higher convection velocity. However, it

also implies higher temperature gradients for soot diffusion. In the convection term in

Eq. (7.9), the maximum scalar dissipation rate in the β factor multiplies both terms,

so it cancels where the convective coefficient is zero. The dependence of the convective
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coefficient on the peak dissipation rate is then through the dependence of temperature and

composition profiles on the peak dissipation rate. In the convection coefficient, considering

only temperature dependencies of viscosity, density, and diffusivity, the variation of the

location of C = 0 with χmax should be small. Viscosity, density and diffusivity are

approximately proportional to T 0.5, T−1, and T 1.5, respectively. Then, at C = 0

1
T

∂T

∂ξ

(
a+ bT−0.25

)
+ c = 0 (7.12)

is the criterion for locating the particle stagnation point. Here, a, b, and c are composition-

dependent constants. As the maximum dissipation rate is varied from zero to extinction,

the peak temperature decreases from 2400 to 1800 K. The ratio of peak and minimum

temperatures is 1.33. The corresponding ratio to the 0.25 power is 1.07, showing the small

effect of the second term in the above equation. The temperature gradient coefficient

variation is also small since it is normalized by the temperature. Figure 7.5 shows the

convection coefficient for maximum scalar dissipation rates varying from 100 to 1500 s−1.

The profiles are nearly identical except near the flame zone. The jog in the curves

at ξ = 0.47 is due to differentiating the mixture fraction diffusivity defined as λ/ρCp.
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The tabulated heat capacity data from the Chemkin thermodynamic database have a

discontinuous derivative of temperature at 1000 K which separates the high and low

temperature curve fits.

These results show that the position of the particle stagnation plane in the mixture

fraction coordinate is largely independent of the dissipation rate field. In flamelet models

with soot, the soot cannot penetrate to mixture fractions larger than the position of

the particle stagnation plane (PSP). Since soot is oxidized at the flame zone and always

convected away from the flame zone for usual stream compositions, soot can also not exist

lean of the soot production zone in the laminar flamelet model. Hence soot is effectively

pinned to a specific band of mixture fraction. This is clearly in opposition to the DNS

results presented in Chapters 5 and 6. In the presence of turbulent mixing, convolution

over a PDF to obtain mean values would allow soot to occur at regions with mean mixture

fractions greater than ξPSP , but this occurs at the turbulent mixing scale and not at the

fine scales where chemical reaction occurs. Of course, it is possible to allow soot to be

present in the pure streams or to set the boundaries of the flamelet to nonpure conditions,

such as partially burned products. For example, in a real flame, a blob of sooty gas at

ξ = 0.3 could be surrounded by pure fuel; diffusion would result in a nearly ξ = 1 mixture

with soot.

It is well known in gas combustion that the boundary conditions of pure fuel and

air are not always appropriate in real flames since flames may exist between air and
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partially burned products or fuel and partially diluted air. The latter case implies partial

premixing, which would occur in flames with extinction phenomena and the present

arguments concern those in the flamelet regimes. This argument is valid only in as much

as the maximum scalar dissipation rate affects the flow at a given mixture fraction. For

example, consider a flow for which the peak scalar dissipation rate is constant, and the

mixture fraction dependence of the scalar dissipation rate is given by Eq. (3.2). In this

case, flames existing between, e.g., air and partially burned fuel are identical to those

between pure air and fuel. Just take a given pure stream flamelet solution and draw

a line at the mixture fraction of the partially burned fuel stream ξpb. The new flame

between ξ = 0 and ξ = ξpb is the same as for the pure streams. The assumption is

that the partially burned boundary arises from a flamelet with pure streams, with the

same maximum scalar dissipation rate and scalar dissipation rate profile. With soot

formation, this scenario is complicated by the physical barrier of soot at the PSP in

contrast to the realistic scenario in which soot may be present in more rich streams

through non-flamelet-like mixing alluded to above.

7.2 Quantification of the Temperature
Flamelet Equation

The classic flamelet equations described by Peters [25] and given by

ρ
∂Yi

∂τ
=
ρχ

2
∂2Yi
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+ ṁ′′′

i , (7.13)
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have been applied extensively in turbulent combustion modeling. The temperature

flamelet equation given above is approximate within the assumptions of the flamelet

concept. Assuming constant pressure, no heat losses, and ignoring viscous dissipation and

kinetic energy, the energy equation in physical space written in terms of the temperature

is given by
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Before this equation is transformed to the mixture fraction coordinate to yield Eq.

(7.13), the terms in brackets in Eq. (7.15) are often ignored. These terms arise from the

heat flux term in the energy equation, specifically from the thermal conduction term. To

quote Peters [25, p. 322]: “For approximate solutions, the last two terms in [Eq. (7.15)]

are in general neglected as being small compared to the source term.” If the bracketed

terms are not ignored, the following exact temperature flamelet equation is obtained:

ρ
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= ρ

χ
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[
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∂hk
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]
. (7.16)

In the literature, several forms of the energy equation are used including

• the exact form of the temperature equation, e.g., [29],

• the approximate form of the temperature equation, e.g., [148],

• and enthalpy formulations, e.g., [41, 149].

In this section the neglect of the bracketed terms in Eq. (7.15) is quantified by

comparing the results of the steady temperature flamelet equation given above with

the exact energy equation, written in terms of enthalpy. With a unity Lewis number

assumption and no heat losses, enthalpy is a known function of the mixture fraction

given simply as

h(ξ) = hξ=1ξ + (1− ξ)hξ=0. (7.17)

With enthalpy known and composition computed, temperature may be inverted from

h = h(T, Yi), as given in Chapter 1. It is found that the neglect of the bracketed terms

in Eq. (7.15) is reasonable in the reaction zone, but that large errors occur outside of the

main combustion zone, resulting in substantial error in the temperature-mixture fraction

profile and failure to conserve energy.

The flamelet equations are solved as described in Chapter 3 by integration of the un-

steady equations to steady state. Spatial derivatives are approximated with second-order

central differences on uniform grids of 1000 points in the mixture fraction coordinate.

The scalar dissipation rate is computed from Eq. (3.2). Two versions of the flamelet code
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are used: the first solves the temperature flamelet equation given above, Eq. (7.14), and

the second computes temperature from the known enthalpy profile. The solutions from

both formulations were shown to satisfy their respective forms of the steady temperature

flamelet equations, given above, in a separate postprocessing step.

A flamelet with streams of pure air (ξ = 0) and pure hydrogen (ξ = 1) at 1 atm

pressure and 298.15 K was computed with a stoichiometric scalar dissipation rate (χst)

of 1 s−1. Figure 7.6 shows profiles of the resulting temperature for the approximate and

exact energy equations. The temperature error at the stoichiometric point of ξ = 0.0281

is 66 K, while the peak error at ξ = 0.29 is 916 K. The shapes of the temperature profiles

are significantly different and the maximum error is very large. However, the error at

the stoichiometric point is only 3%. Similar results are obtained for hydrogen at other

scalar dissipation rates. At χst = 45.2 s−1 the stoichiometric temperature for the exact

formulation is 1583 K with the stoichiometric temperature for the approximate equation

44 K less. The peak temperature difference is 685 K at ξ = 0.31. The temperature

maximum and mixture fraction for the exact case are at 1607 K and ξ = 0.039, with

the approximate case higher in both values by 90 K and ∆ξ = 0.024, respectively.

The stoichiometric extinction dissipation rates of 100 s−1 differed by 3% for the two

formulations.

In addition to the hydrogen case, a methane-air case at χst = 1 s−1 was performed.

The temperature difference at the stoichiometric point (ξ = 0.0552) was 78 K, while the
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Figure 7.6. Flamelet temperature profiles at a stoichiometric scalar dissipation rate of
1 s−1 for hydrogen combustion.
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peak temperature difference was 271 K at ξ = 0.39.

Figure 7.7 shows a comparison of the four terms in the exact temperature flamelet

equation over a part of the mixture fraction domain. At larger mixture fractions the pro-

files decay smoothly to zero. In the region of the stoichiometric point, the dissipation rate

term is nearly balanced by the reaction rate term with the extra terms contributing little.

This explains the similarity in the temperature profiles of the exact and approximate

equations in that region. However, at a mixture fraction of about 0.05, the reaction term

has decayed nearly to zero, while the other terms remain. The temperature dissipation

term is balanced nearly equally by the other two terms which each account for 50%

of the dissipation term. The linearity of the temperature profile in Fig. 7.6 for the

approximate temperature equation is a result of the reaction term being zero, hence at

steady state, requiring the dissipation term to be zero, which occurs when the curvature

of the temperature profile is zero.

While temperature errors are relatively small near the stoichiometric point using the

approximate formulation, the errors away from stoichiometric are significant. Several

applications of flamelets will suffer from the approximate energy formulation, such as

environments with significant chemical kinetics in the rich region. Soot rates peak around

a mixture fraction of 0.2 and are very sensitive to temperature. Convolution of flamelet

tables over a mixture fraction and possibly scalar dissipation rate and/or the heat loss
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Figure 7.7. Budget of terms in the temperature flamelet equation given in Eq. (7.16).
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joint PDF in turbulence modeling will result in the effects of the temperature profile

throughout the flamelet being felt by a mean quantity dependent upon the mixture

fraction. For example, considering only mixture fraction dependence,

φ̄ =
∫ 1

0
φ(ξ)P (ξ)dξ, (7.18)

where φ is some scalar quantity dependent on mixture fraction, such as temperature,

and P (ξ) is the mixture fraction PDF. Even for a stoichiometric mean mixture fraction,

the temperature error may be large if the variance of the PDF is wide enough to access

mixture fractions of high temperature error. In addition, the deviation of the enthalpy

from the exact linear profile that occurs when using the approximate temperature flamelet

equation is a significant fraction of the sensible enthalpy and will have adverse effects on

subgrid heat losses, which may be incorporated into a flamelet model for use in an LES

or RANS simulation. For these reasons, the flamelet model should only be implemented

with the exact temperature equation or with an equivalent enthalpy equation.

7.3 A-Priori Analysis of CMC Modeling

In Chapters 5 and 6, soot transport was investigated using DNS. Differential soot

diffusion was shown to result in strong transport in the mixture fraction coordinate. The

relatively long formation timescale of soot and the well-known lack of a simple state

relationship with the mixture fraction complicate modeling of turbulent sooting flames.

The conditional moment closure model was introduced in Chapter 1 and is a promising

model for simulation of soot formation and transport in turbulent flames. CMC is an ele-

gant and general model that solves unsteady transport equations for reactive scalars that

are conditionally averaged on given values of mixture fraction [31, 150]. The conditional

mean scalars, along with a description of the mixture fraction PDF, allows a solution

of the mean flow. This conditioning allows more accurate closure of nonlinear reactive

source terms since conditional fluctuations are smaller than unconditional ones. Since

CMC deals directly with transport in physical space and the mixture fraction coordinate,

turbulent transport of soot in this coordinate may be treated directly. The success of

the CMC model depends on closure models for terms in the derived CMC equations.

DNS data are ideal for model development and evaluation since detailed flow structure is

available, and CMC terms can be evaluated a-priori in their unclosed and closed forms.
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One of the major challenges of CMC modeling is the accurate treatment of differ-

entially diffusing species. This is an inherent difficulty since the mixture fraction itself,

which is the conditioning variable, relies on the absence of strong differential diffusion

for its definition. This inconsistency is generally ignored, however, and corrections for

differential diffusion are incorporated into the species and enthalpy transport equations.

Kronenburg and Bilger [145] have developed a CMC formulation allowing for differential

diffusion of chemical species, but the formulation requires solution of additional transport

equations to solve for restorative terms associated with the differential diffusion. CMC

accounting for differential diffusion has been applied to the problem of soot formation

in nonpremixed flames [32]. Hewson et al. [146] have recently presented a new CMC

formulation for soot formation accounting for differential diffusion that does not require

the solution of additional transport equations, which significantly reduces the computa-

tional costs of the model. Their model was developed for application to fires with large

quantities of soot formation. The model was tested a-priori using the one-dimensional

turbulence model. Since differential diffusion of soot is much stronger than that of other

gaseous species, only differential diffusion of soot is considered. In applications with

high levels of soot formation, significant conversion of gaseous carbon to soot can result.

This complicates the definition of the mixture fraction as noted above. To minimize this

effect, all scalars are conditioned on a gas-only mixture fraction. This mixture fraction

is no longer a conserved scalar, but by conditioning on the gas-only mixture fraction,

the difference is only the addition of an reactive source term accounting for conversion of

gaseous carbon to soot mass. Details of this model can be found in [146].

In this section, the three-dimensional DNS simulation presented in Chapter 6 is used

to study the CMC formulation developed by Hewson et al. A budget of selected terms in

the CMC equations is presented for soot species and also gaseous species. Closure models

for the considered terms are compared to the unclosed terms in the equations. Here, the

gas-only mixture fraction formulation is not required since soot concentrations are low

and represent a small fraction of the gaseous carbon in the system.

7.3.1 CMC Formulation

The CMC equations considered in this paper are derived from the joint species PDF

equation following Klimenko [31]. The dependence of conditional quantities on the

nonhomogeneous cross-stream direction is neglected here, so that all spatial derivatives
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of conditional quantities are neglected. This is a common assumption in CMC modeling

of jet diffusion flames [32, 151].

A brief description of the CMC model derivation is presented below. A more detailed

derivation is given in Appendix D. One begins by taking the average of the transport

equation for the multidimensional fine-grain PDF by integrating over the multidimen-

sional sample space to obtain the joint PDF transport equation. The transport equation

for the fine grain PDF is given by

∂ρψ

∂t
+∇ · (ρ~vψ) +

∂

∂Zi
(ψ∇ · (ρDi∇Yi)) = (7.19)

− ∂

∂Zi
(ψωi)−

∂

∂Zi

(
ψ∇ · (ρ−1DT,iYi∇ lnT )

)
.

Here, ψ is the fine grain PDF, wi is a reaction source term, ρ is density, v is velocity,

T is temperature, D is a diffusivity, Yi is a species random variable (including mixture

fraction and soot mass-moments divided by density), and Zi is its sample space variable.

Index notation is used (but Di refers directly to Yi with no implied summation). The last

term is the thermophoretic term and is assumed zero for all species except soot moments.

The third term is the diffusion term and is rearranged significantly in the derivation.

The diffusive term is split into two terms: (1) a term with all diffusivities equal, and

(2) a correction to this:

∂

∂Zi
(ψ∇ · (ρDi∇Yi)) =

∂

∂Zi
(ψ∇ · (ρD∇Yi)) + (7.20)

∂

∂Zi
(ψ∇ · (ρ(Di −D)∇Yi)) .

The derivation then proceeds as in the constant diffusivity case, and the correction

term is brought along directly, with no additional rearrangement. The first term on the

right-hand side (RHS) is replaced according to the identity

∂

∂Zi
(ψ∇ · (ρD∇Yi)) =

∂

∂Zi

∂

∂Zj
(ψρD∇Yi · ∇Yj)−∇ · (ρD∇ψ). (7.21)

The term on the far RHS of this equation is replaced with the identity

∇ · (ρD∇ψ) = ∇2(ρDψ)−∇ · (ψ∇(ρD)). (7.22)
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The resulting equation is averaged over the sample space to obtain the joint PDF trans-

port equation:

∂〈ρ|Z〉P
∂t

+∇ · (〈ρ~v|Z〉P ) = − ∂

∂Zi
(〈ωi|Z〉P ) (7.23)

− ∂

∂Zi

(
〈∇ · (ρ−1DT,iYi∇ lnT )〉P

)
− ∂

∂Zi
(〈∇ · (ρ(Di −D)∇Yi)|Z〉P )

− ∂

∂Zi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )

+∇2(〈ρD|Z〉P )−∇ · (〈∇(ρD)|Z〉P ).

The terms on the RHS are a reaction term, a thermophoretic diffusion term, a differential

diffusion term, a diffusion term and two terms arising from the diffusion term (which are

normally neglected at high Reynolds number [31]).

The joint PDF equation is multiplied by one of the Zi (say Zk) and integrated over all

Zi except for η, where η is the sample space variable for mixture fraction, ξ. This results

in the transport equation for conditionally averaged scalars, the CMC equation. Here, the

identity of the diffusivity D must be determined, and different results are obtained with

different choices. Setting D equal to the thermal diffusivity is a popular choice. Hewson

et al. [146] set D equal to the species under consideration (that is, D = Di corresponding

to Zk). The resulting equation for soot mass fraction is

∂〈ρYs|η〉Pη

∂t
+∇ · (〈ρYs~v|η〉Pη) = 〈ωY s|η〉Pη (7.24)

+ 〈∇ · (ρYsDT,i∇ lnT )|η〉Pη

− ∂

∂η
(〈∇ · [ρ(Dξ −Ds)∇ξ]Ys|η〉Pη)

− ∂2

∂η2

(
〈ρDs(∇ξ)2Ys|η〉Pη

)
+

∂

∂η
(〈2ρDs(∇Ys∇ξ)|η〉Pη)

+∇2(〈ρDsYs|η〉Pη)−∇ · (〈∇(ρDsYs)|η〉Pη).

This equation can be rewritten in terms of other chemical species mass fractions instead

of soot by a simple change of notation and by ignoring the thermophoretic term. When
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soot is considered, its diffusivity is so small that terms multiplying Ds can be neglected.

In that case, the differential diffusion term has the form

∂

∂η
(〈∇ · [ρDξ∇ξ]Ys|η〉Pη) = − ∂

∂η
(〈Ysρ|∇ξ|vξ|η〉Pη) . (7.25)

Here, the quantity |∇ξ|vξ is a diffusion velocity with units of inverse seconds or, rather,

with units of mixture fraction per second. The differential diffusion term is physically the

divergence of soot mass flux in the mixture fraction coordinate. The form of Eq. (7.25)

is exactly analogous to the more common diffusion term in physical space. The analogy

is shown here as

jx =
∂

∂x
(ρYkVx), (7.26)

jη =
∂

∂η
(〈ρYkv̂ξ|η〉Pη), (7.27)

where v̂ξ is |∇ξ|vξ. In the first equation, the divergence is in physical space of the product

of a mass density of species Yk and a diffusion velocity in the physical space. In the second

equation (ignoring the cross-correlations in the conditional variables), 〈ρ|η〉Pη〈Yk|η〉 is a

mass density in the physical and mixture fraction space (that is, mass per meter cubed

per unit mixture fraction), and v̂ξ is a velocity in the mixture fraction coordinate.

Most of the terms in Eq. (7.24) are unclosed. In this section, comparison of the

magnitudes of the transport terms on the RHS of Eq. (7.24) is made, along with closure

models for three of these terms. Following the primary closure hypothesis of Klimenko

and Bilger [31], closures of the differential diffusion (DD) term, the dissipation-scalar (DS)

term, and the cross-dissipation (CD) term (which are terms 3, 4, and 5, respectively, on

the RHS of Eq. (7.24)), are obtained [146]:

DD : − ∂

∂η
(〈∇ · [ρ(Dξ −Ds)∇ξ]Ys|η〉Pη) ≈ − ∂

∂η

(
(Dξ −Ds)ηρηMηQs

(Dξ)η
Pη

)
, (7.28)

DS : − ∂2

∂η2

(
〈ρDs(∇ξ)2Ys|η〉Pη

)
≈ − ∂2

∂η2

(
ρηχη(Ds)ηQs

2Dξ
Pη

)
, (7.29)

CD :
∂

∂η
(〈2ρDs(∇Ys∇ξ)|η〉Pη) ≈ ∂

∂η

(
ρηχη(Ds)η

(Dξ)η

∂Qs

∂η
Pη

)
. (7.30)
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In this equation, a subscript η is short for < ·|η >, Qs denotes the conditional mass

fraction of soot (or other species), and Mη is defined as

Mη =
1
ρη
〈∇ · (ρDξ∇ξ)|η〉. (7.31)

These closures arise chiefly from the neglect of cross-correlations among conditional

quantities, that is, by assuming 〈ab|η〉 ≈ 〈a|η〉〈b|η〉.

7.3.2 Results

The CMC terms, unclosed in Eq. (7.24) and closed in Eqs. (7.28)-(7.30), are evaluated

from the raw DNS data by conditionally averaging using 100 bins in the mixture fraction

coordinate. The conditional data are relatively smooth, but derivatives, especially second

derivatives, are very noisy. A filter that removes high wavenumber content containing

little energy was applied to the raw conditional data for which derivatives in the mixture

fraction coordinate were taken.

7.3.2.1 Soot Mass Fraction Equation

Figure 7.8 shows a comparison of three key terms on the RHS of Eq. (7.24) for

the soot mass fraction at times of t = 25τj and t = 50τj . The terms shown are the

reaction source term, the differential diffusion term, and the thermophoretic diffusion

term. Spatial derivatives of conditional mean quantities are not considered, and the soot

diffusivity is equal to zero. The magnitude of the terms at the later time is higher because

the PDF of the mixture fraction is higher in the reactive regions as the combustion

products expand and fuel and oxidizer mix. In addition, the peak 〈Ys|η〉 at t = 50τj

is approximately five times the value at t = 25τj . At a given time, the reaction and

differential diffusion terms are of similar magnitudes, showing the importance of both

terms. The thermophoretic term, however, has a much smaller magnitude and this term

does not contribute significantly to the conditional soot transport equation. These results

are consistent with comparisons between the diffusive velocity of the mixture fraction and

thermophoretic diffusion velocity shown in Chapters 5 and 6.

The dual peaks in the differential diffusion term near the stoichiometric point arise

from a small peak in the mixture fraction PDF at this point. Near this location, flow

dilatation and temperature (hence, kinematic viscosity) are high and the local Reynolds

number is lower, reducing mixing rates. This peak coincides with a depression in the
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Figure 7.8. CMC terms for conditional soot mass fraction equation at two times.

conditional mean scalar dissipation rate. The mixture fraction PDF and conditional

mean scalar dissipation rate are shown in Fig. 7.9.

Figure 7.10 shows the differential diffusion term for soot mass fraction, as well as the

model approximation for this term, given in Eq. (7.28). The DD term and its model are

of similar magnitudes overall. The agreement between the two terms is good at very rich

mixture fractions. However, at intermediate mixture fractions and near the flame zone,

large differences exist. Hewson et al. [146] noted this discrepancy and proposed a model

for the residual DD term, representing the error between the exact term and its modeled

approximation. The model is based on a turbulent diffusion process in mixture fraction

space and is given by

RDDM ≈ ρηχηPη

2LeDD,t

∂2Qs

∂η2
, (7.32)

where LeDD,t is an effective turbulent Lewis number. The RDD term is also plotted in

Fig. 7.10 plot (a), as the dash-dot line. In Fig. 7.10 plot (b), the DD term is plotted

along with the sum of the modeled DD term and modeled residual DD term. Here LeDD,t

was set to a value of 3.0 to give reasonable agreement between the curves. The sum of

the model and residual terms is observed to reproduce the qualitative shape of the exact
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DD term throughout the whole mixture fraction domain. The quantitative agreement is

also remarkably good, consistent with previous results [146].

7.3.2.2 Gaseous Species

The CMC transport equation is applicable to gaseous species as well as soot, with a

change of notation: Ds and Ys refer now to the species mass fractions instead of soot

mass fractions. Whereas the soot diffusivity is practically zero, the species diffusivities

are significant, and the fourth and fifth terms on the RHS of Eq. (7.24) are present in the

balance equation. The thermophoretic term is neglected for gaseous species, however. It

is noted that the model for species diffusion fluxes used in S3D is not exactly the same as

the model used in the CMC transport equations, and a slight discrepancy arises. In an

a-priori simulation, the composition fields can be analyzed without regard to the physical

mechanism in which the fields were obtained, but absolute consistency between the model

and the DNS data is not obtained. The mixture averaged transport model used in S3D

is given by

ji = −ρYi

Xi
Di∇Xi, (7.33)

= −ρDi

(
∇Yi +

Yi

Wt
∇Wt

)
,

where Xi is the mole fraction, and Wt is the mean molecular weight. For the ethylene

fuel, however, the fuel and oxidizer streams have nearly the same mean molecular weight,

and there is no change in the number of moles for complete combustion of the fuel. Hence,

the Wt field is approximately constant, and the gradient of Wt is neglected here.

The upper plots of Fig. 7.11 show the exact CMC terms of Eq. (7.24) for reactive

scalars CO2, OH, and H, at t = 50τj . For each gaseous species, the four terms shown are

of similar magnitudes in all regions of the mixture fraction coordinate; hence all terms are

important to the CMC transport equation of the given species. The differential diffusion

term is quite small for OH but significant for CO2 and H. The cross-dissipation and

dissipation-scalar terms tend to oppose and balance one another for each of the species

throughout most of the mixture fraction domain, as previously observed [146].

A comparison of the exact and modeled CMC terms is given in the middle and lower

plots of Fig. 7.11 for species CO2, OH, and H. For each species, the center plot contains

the dissipation-scalar and cross-dissipation terms, along with their modeling closures.
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The lower plots show the differential diffusion term and its model. The DS and CD

models show the right trend for each of the species and reasonably good quantitative

agreement for species CO2 and OH. The modeled CS and DS terms do not agree as well

for H, however.

The DD term and its model similarly show a good qualitative trend over the mixture

fraction domain for each of the species and the two curves are reasonably close in

magnitude. The discrepancies between the modeled and exact terms are due to the

neglect of cross-correlations between the products of quantities making up the terms since

this assumption is made in deriving the modeled terms. The model for the differential

diffusion term of gaseous species, DDM in Eq. (7.28), is remarkably accurate, in contrast

to the soot mass fraction, and the model for the residual of the differential diffusion model

of the gaseous species is not required. This is likely a direct consequence of the relatively

fast chemistry of the gaseous reactions. These species have relatively low conditional

standard deviations, as previously shown. The fast chemistry allows these species to

relax to new conditional values quickly as they are transported in the mixture fraction

coordinate, precluding the need for the additional residual model.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this chapter, a summary of major results and conclusions drawn from the DNS

studies presented previously is given. Direct numerical simulation of combustion with

soot formation is a new contribution to the field of numerical simulation and opportunities

for future studies are presented.

8.1 DNS of Soot Formation and Transport

A series of DNS simulations of nonpremixed ethylene flames were conducted in con-

figurations of increasing complexity. These included one-dimensional simulations of a

relaxing diffusion flame, two-dimensional simulations of a laminar mixing layer and de-

caying isotropic turbulence, and a three-dimensional simulation of a temporally evolving

jet flame. The simulations represent the first extension of DNS to soot formation in

configurations with realistic combustion chemistry and a complex fuel: ethylene. The

focus of the work has been on fundamental mechanisms of soot transport in turbulent

flames.

8.1.1 One-Dimensional Simulations

The one-dimensional simulations provided insight into soot formation in a trivial

configuration. The simulations allowed comparison of convective and mixture fraction

velocities in an unstrained configuration. The convective velocity arising from flame

expansion alone was found to be significant. The simulation showed that the effect of

radiation on soot concentration and temperature is important, but only at timescales

greater than approximately 10 ms. For this reason, the optically thin radiation model is

adequate for DNS simulations restricted to small simulation times.

8.1.2 Two-Dimensional Mixing Layer Simulations

The two-dimensional mixing layer simulations showed the importance of soot trans-

port in the mixture fraction coordinate as soot was convected away from its formation
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region into the vortex structures. These results showed how soot transport, and hence

soot concentrations are influenced directly by coherent turbulent structures. The simu-

lations also showed the importance of flame expansion and heat release on the mixing

characteristics of the flames. Specifically, the inability of the flame to penetrate the

small-scale vortex was highlighted. The exclusion of the flame from the eddy prompted

investigation of flame dynamic effects that were used to understand soot formation in the

turbulent simulations that followed.

8.1.3 Two-Dimensional Decaying
Turbulence Simulations

The two-dimensional decaying turbulence simulations provided great insight into the

importance of soot transport in the mixture fraction coordinate. The analysis made use

of the diffusion velocity of isocontours of the mixture fraction relative to convection. The

expression for this velocity was decomposed into a multidimensional curvature term and

a one-dimensional normal diffusion term. It was shown that the normal diffusion term

could be written in terms of the scalar dissipation rate, providing a link between the

scalar dissipation rate and the flame displacement velocity. Several important results are

summarized below:

• The location of soot relative to a flame, as measured by the mixture fraction, has

a strong impact on the local concentrations of soot, the rates of soot reaction, and

the soot temperatures.

• Soot spreads over mixture fractions from 0.1-0.8, with mass fractions ranging from

0-0.22 (approximately 2 ppmv). This broad spread of soot was shown to result from

its differential diffusion with respect to the gaseous species.

• Soot transport is primarily governed by fluid convection and thermophoresis. In the

turbulent simulations, fluid convection dominates soot thermophoresis (by a factor

of about 10) and soot is mainly convected with the flow. The flame displacement

velocity and fluid convective velocity is of the same order of magnitude. The soot-

flame position is given by the relative motion between the flame surface and the

fluid motion.

• The flame displacement velocity was computed and the soot concentrations were

found to peak where the flame displacement velocity is zero or positive–i.e., where
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the flame moves towards the soot.

• The flame displacement velocity was derived from two terms: a normal diffusion

term, present in all flames, and a curvature term, present only in multidimensional

flames. Both terms were shown to be important. Since the stoichiometric mixture

fraction is low (ξst = 0.064) in the two-dimensional simulation, normal diffusion

generally moved the flame toward the air stream, away from soot. The curvature

term augments the flame displacement velocity so that flames curved towards the

fuel stream have a flame displacement velocity shifted towards the fuel stream, while

the converse occurs for flames curved toward the air stream.

• Low levels of soot-flame breakthrough were also observed in regions of high flame

curvature.

• While soot mass fraction showed a high degree of scatter in magnitude and mixture

fraction, temperature showed very little scatter, and soot reaction rates were sharply

located in the mixture fraction coordinate. These observations have been known and

used by others in modeling turbulent sooting flames, but the influence of differential

soot transport due to multidimensional flame effects should be accounted for to

accurately predict flame radiation and soot emission.

8.1.4 Three-Dimensional Temporal Jet Simulation

The analysis of the two-dimensional simulation was also applied in the three-dimensional

simulation. Furthermore, the three-dimensional simulation is physically more realistic

than two-dimensional turbulence and allowed the gathering of turbulence statistics to

quantify the importance of the flame dynamic analysis. The temporal jet configuration

is also a more realistic configuration that is more relevant to turbulent combustion in

realistic environments.

The major conclusions of the two-dimensional simulations remain unchanged in going

to three dimensions. An important effect not observed in the two-dimensional simulations

is the competition between turbulent soot transport towards higher mixture fractions

and the reduction in peak mixture fraction through bulk mixing of the fuel and oxidizer

streams. This is due, in part, to the relatively shorter turbulence timescales imposed

in the three-dimensional DNS, as well as the greater mixing rates in three-dimensional

turbulence. In addition, as the jet evolves, the normal diffusion component of the flame
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displacement velocity, which is almost exclusively negative in the two-dimensional case,

is substantially positive in the jet configuration. Several key findings are reported below:

• The turbulent flame yields a lognormal probability density function of scalar dissi-

pation rate with a negative skewness in agreement with nonreacting experimental

data and reacting DNS results.

• Motion of soot in the mixture fraction coordinate arises from differential diffusion

between soot and mixture fraction, as well as the bulk effect of mixing of the fuel

jet core.

• The curvature and normal diffusion terms of vξ were computed and found to be

of similar magnitude and of either sign. As the jet evolved, the curvature PDF

remained centered at zero, while the positive fraction of the normal diffusion term

progressively increased, resulting in an increase in the fraction of positive vξ.

• A substantial portion of the ξst surface (nearly 50% towards the end of the sim-

ulation) had vξ > 0. In these regions soot is convected towards the flame, which

is the opposite of what occurs in canonical opposed jet or flamelet configurations

commonly used in modeling.

• The thermophoretic velocity was again found to be lower than vξ by an order of

magnitude over the range of ξ, indicating that thermophoretic effects are small

compared to differential diffusion effects between gaseous species and soot.

8.2 Flamelet and CMC Modeling

Soot formation and transport were implemented in a laminar flamelet model, which

can (and has) been used in RANS and LES modeling of nonpremixed combustion. The

flamelet formulation incorporated the thermophoretic diffusion of soot, with numerical

behavior distinct from the usual flamelet equations with unity Lewis numbers. The soot

transport equation that results is an unsteady, convection (in mixture fraction-space)

and reaction equation. Thermophoresis was found to move the particle stagnation plane

away from the intrinsic stagnation plane at ξ = 0.5, which is built into the imposed

scalar dissipation rate profile. In the flamelet model, soot is convected away from the

flame zone and is effectively pinned to a zone of mixture fraction between the location of

soot formation and the particle stagnation plane. The location of the particle stagnation

plane was shown to be insensitive to the scalar dissipation rate.
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The three-dimensional DNS were used to conduct an a-priori study of a new CMC

model for soot transport. A comparison of important terms in the CMC equations

was made. The flame displacement velocity vξ was shown to arise naturally in the

formulation and appeared, as expected, in the differential diffusion term between soot

and the mixture fraction. For soot transport, the reaction and differential diffusion

terms were of similar magnitudes while the thermophoretic term was much smaller.

The analysis was also applied to gaseous species, of which three were considered. The

balance of the unclosed terms for the gaseous species showed that the dissipation-scalar,

cross-dissipation, differential diffusion, and chemical reaction terms all were important.

In each case, the cross-dissipation and dissipation-scalar terms opposed and partially

cancelled one another. This behavior highlights the importance of considering not just

individual terms but collections of terms when applying closure models. For instance, it

may be difficult to find accurate closures for individual terms, but these closures may not

be needed if collections of terms are small. This is an area in which DNS analysis can be

invaluable.

Closure models for transport terms were applied that neglect cross-correlations of

conditional products of terms. The model for the differential diffusion term of the gaseous

species was quite accurate, whereas the models for the cross-dissipation terms, while

qualitatively correct, tended to overshoot the unclosed terms. In contrast, the differential

diffusion model for soot was rather poor, but when augmented by a model for the residual,

the results were quite accurate. This result is very encouraging for the prospects of

modeling turbulent soot formation using CMC.

8.3 Future Work

The DNS simulations presented in this work are the first of their kind. They were

developed with two goals: (1) to provide fundamental insight into turbulent soot forma-

tion and transport, and (2) to provide a database by which models can be tested and

developed. Because of the high computational cost of the simulations, the number and

complexity of the simulations were limited. Future simulations would benefit by several

extensions and additions:

• The incorporation of more complex gas and soot chemistry. Gas chemistry that

included PAH formation, even if only with semiempirical or global steps, would

lend confidence to the soot nucleation processes. More complex soot models could
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be applied. These would include detailed growth mechanisms, such as the HACA

mechanism, in which the influence of H atoms, with strong differential diffusion of

its own, may play a role. An oxidation mechanism directly including the effects of

OH oxidation, rather than implicitly including its effects, would be useful.

• Longer simulation run times would better accommodate the slower soot formation

processes, but at a higher computational cost. For low-Mach environments with

acoustic, rather than chemical restrictions on timestep size, the DNS would benefit

from the use of acoustic scaling to increase the possible timestep size for accurate

and stable solution.

• The configurations investigated consist of the early to intermediate stages of burnout

of the fuel stream. Additional simulations that explore the later, burnout portion of

the flame in which the peak mixture fractions are lower and soot is forced towards

the flame zone where it oxidizes would be of great interest. Computational costs

for this situation could be minimized by initializing a domain with stream compo-

sitions and turbulence that correspond to an intermediate stage of development of

a turbulent flame.

• Presently, no experimental results are available in the parameter space accessible

to DNS. This is unfortunate since it precludes direct comparison with experimental

data. Generally, DNS simulations are well resolved and solve transport equations

and chemistry that are reliable and accurate. Soot chemistry and the modeling of

the particle size distribution is less precise, but a long-term goal would be to do

turbulent simulations that could be compared directly with experiment, preferably

with both simulation and experiment progressing together to a region of good

overlap in the parameter space (domain size, Reynolds number, etc.).

• The importance of flames and fires requires accurate combustion models that can

accurately capture known physics (such as soot-flame breakthrough). The develop-

ment of cost-effective turbulence models that can incorporate relevant physics and

a willingness to fund research to achieve these goals are important for progress of

the science and its potential benefits for real-world applications.



APPENDIX A

FINITE DIFFERENCE PROGRAM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Finite difference approximations to arbitrary order derivatives %
% using arbitrary stencils. %
% %
% d^n u 1 %
% ----- = --------- * sum_k( a_k * u_k ) %
% d x^n delta_x^n %
% %
% As an example, a second order central second difference: %
% d^2 u/dx^2 = 1/dx^2 * (a_(j-1)*u_(j-1) + %
% a_(j)*u_(j)+a_(j+1)*u_(j+1)) %
% with a_u’s are 1 -2 1 %
% I assume here that j=0 is the base point. %
% %
% INPUT: nder -- is order of the derivative to be approximated. %
% npts -- is number of points in the stencil %

(at least nder+1). %
% jb -- is the position of the base point in the stencil%
% OUPUT: a_u -- are the coefficients of the grid points %
% order -- is the order of the method %
% (Note a hardwired max order and tolerance) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc; clear;

nder = input(’Enter order of derivative to approximate: ’);
npts = input(’Enter # of points in stencil (min is nder+1): ’);
jb = input(’Enter position of the base point in stencil: ’);

jp = 1-jb:npts-jb; % indx of grd pnts of u (eg j-1, j, j+1)

j=1:npts; % compute the FD approximation
for k=1:npts

a_kj(k,j) = (jp(j).^(k-1))./factorial(k-1);
end
b = zeros(npts,1);
b(nder+1) = 1;
a_u = inv(a_kj)*b;
a_u = a_u’;
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% check the order
for k=nder+2:100

aa(j) = (jp(j).^(k-1))./factorial(k-1);
if(abs(sum(aa.*a_u)) > 1.0E-10)

break;
end

end
% output the results

disp(’ ’);
disp(’grid_position, coefficient’);
disp([jp’ a_u’]);
order = k-nder-1



APPENDIX B

PRODUCT DIFFERENCE ALGORITH

% Product Difference Algorith for use with the quadrature
% method of moments (QMOM)

function absc_wts = pd( M )
n = size(M); n = n(1,1);
N = n/2;
mu = M;
mu = mu/mu(1);
ms = mu(2);
i=[2:n]’;
mu(i) = mu(i)./ms.^(i-1);
P = zeros(n+1,n+1);
P(1,1) = 1;
i=[1:n]’;
P(i,2) = mu.*(-1).^(i-1);
for j=3:n+1
for i=1:n-j+3-1
P(i,j) = P(1,j-1)*P(i+1,j-2) - P(1,j-2)*P(i+1,j-1);

end
end
alph =zeros(n,1);
alph(1) = 0;
i=[2:n]’;
alph(i) = P(1,i+1)./(P(1,i).*P(1,i-1));
i=[1:N]’;
a=zeros(N,1);
b=a;
a(i) = alph(2*i) + alph(2*i-1);
i=[1:N-1]’;
b(i) = sqrt(alph(2*i+1).*alph(2*i));
J=diag(a,0) + diag(b(1:N-1),1) + diag(b(1:N-1),-1);
[V, x] = eig(J);
absc_wts = [diag(x) [V(1,:).^2]’*M(1)];
absc_wts(:,1) = absc_wts(:,1)*ms;



APPENDIX C

MIXING LAYER INSTABILITY

This appendix details the specification of the velocity perturbations applied to the

two-dimensional mixing layer simulations to trip the Kelvin-Helmholtz instability. Linear

stability theory is applied to the initial tanh velocity profile assuming incompressible,

inviscid flow. The treatment follows that given by Michalke [152]. The initial velocity

profile is given by

u(y) =
∆U

2
tanh(σy), (C.1)

where σ = 2/δ, and δ is the characteristic width of the tanh transition.

The velocity field is cast in terms of a stream function ψ, where

u =
dψ

dy
, (C.2)

v = −dψ
dx
. (C.3)

Here, take ψ1 to be the stream function of the velocity perturbation mode. Then ψ1 is

assumed to be of the form

ψ1(x, y, t) = <[φ(y)eiα(x−ct)], (C.4)

where c and φ are complex, and α is real. Here, α is the wavenumber of the disturbance,

and the real and imaginary parts of c: cr, and ci, are the phase velocity and an am-

plification factor, respectively. This can be observed by partially expanding Eq. (C.4)

to

ψ1(x, y, t) = <[φ(y)e−iα(x−crt)eαcit]. (C.5)
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Clearly, ci acts as an amplification factor to the travelling wave given by the oscillatory

term. For temporally evolving mixing layers, the phase velocity cr is zero; otherwise

it is equal to the mean velocity. The goal is to find the complex function φ(y) and to

maximize the product αci. Also, since we are looking for the initial velocity perturbation,

the results are applied at t = 0. In Michalke’s derivation, ∆U and σ were not explicitly

considered (i.e., they would have been implicitly taken as unity).

First, Eqs. (C.2)-(C.4) are substituted into the Euler equation of motion to give the

so-called Rayleigh stability equation:

[ub − c][φ′′ − α2φ]− u′′bφ = 0. (C.6)

In this equation, second-order terms involving the disturbance have been ignored (hence

the linear stability theory). Also, φ is seen to be an eigenfunction of the differential

operator, with c = c(α) the eigenvalue. This eigenvalue is solved as follows. First, set

φ = exp
(∫

Φdy
)
, (C.7)

which, on substitution into Eq. (C.6) gives the so-called Riccati equation in Φ(y):

Φ′ = α2 − Φ2 +
u′′b

ub − c
. (C.8)

The boundary conditions for this equation are given as Φ(+∞) = −α, and Φ(−∞) = +α,

which follow from φ decaying to zero as y → ±∞. This equation is simplified by changing

variables from y to z as

z = tanh(y), (C.9)

so that the integration interval changes from y = ±∞ to z = ±1. Equation (C.8) becomes

dΦ
dz

=
α2 − Φ2

1− z2
− 2z
z − 2ici

. (C.10)

The real and imaginary components are separated to yield



212

dΦr

dz
=
α2 − Φ2

r + Φ2
i

1− z2
− 2z2

z2 + (2ci)2
, (C.11)

dΦi

dz
=

2ΦrΦi

1− z2
− 4ciz
z2 + (2ci)2

, (C.12)

with boundary conditions given by

Φr(1) = −α, (C.13)

Φr(−1) = +α, (C.14)

Φi(1) = 0, (C.15)

Φi(−1) = 0. (C.16)

In Eqs. (C.11)-(C.12), the derivatives are undefined at the boundaries, so L’Hospital’s

rule is applied to give

dΦr

dz

∣∣∣∣
z=+1

= − 2
(α+ 1)(1 + (2ci)2)

, (C.17)

dΦr

dz

∣∣∣∣
z=−1

= − 2
(α+ 1)(1 + (2ci)2)

, (C.18)

dΦi

dz

∣∣∣∣
z=+1

= − 4ci
(α+ 1)(1 + (2ci)2)

, (C.19)

dΦi

dz

∣∣∣∣
z=−1

=
4ci

(α+ 1)(1 + (2ci)2)
. (C.20)

Here, Φr and Φi are antisymmetric and symmetric functions, respectively, so the inte-

gration interval is taken from -1 to 0, and ci is found by iterating on its value until the

boundary conditions

Φr(0) = 0, (C.21)
dΦi

dz

∣∣∣∣
z=0

= 0, (C.22)

are satisfied. Here, satisfying one of these conditions satisfies the other. Equations

(C.11)-(C.12) were integrated with Matlab, where ci was converged in an outer loop

implementing linear extrapolation.

The solution of the Ricatti Eq. (C.8) was solved to obtain ci for various values of α,

and the maximum value of ciα was obtained, hence α. Figure C.1 is a plot of ciα versus α.
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Figure C.1. Plot showing the most unstable mode (peak) of the inviscid tanh velocity
profile.

The peak occurs at α = 0.444918, which is the most unstable mode. The corresponding

period is P = 2π/α. Figure C.2 shows the real and imaginary functions Φr and Φi for

the most unstable mode.

With ci and α known, the solution of the Rayleigh equation is computed. Again Eq.

(C.6) is

d2φ

dy2
=

u′′bφ

ub − c
+ α2φ. (C.23)

To solve this equation, it is first converted into two first-order equations using γ = dφ/dy

to yield

dφ

dy
= γ, (C.24)

dγ

dy
=

u′′bφ

ub − c
+ α2φ. (C.25)

These are expanded into their real and imaginary parts with cr = 0 to give
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Figure C.2. Solution to the Ricatti equation Φ(z) for the most unstable mode.

dφr

dy
= γr, (C.26)

dφi

dy
= γi, (C.27)

dγr

dy
=
u′′b (ubφr − ciφi)

u2
b + c2i

+ α2φr, (C.28)

dγi

dy
=
u′′b (ubφi − ciφr)

u2
b + c2i

+ α2φi. (C.29)

The boundary conditions for these equations are

φr(0) = 1, γr(0) = 0, (C.30)

φi(0) = 1, γi(0) = Φi(0), (C.31)

and the integration is carried out to some large y. The boundary conditions for γ here

follow from Eq. (C.7), so the solution to the Ricatti equation is needed for the boundary

condition γi(0) = Φi(0) in the Rayleigh equation. Figure C.3 shows the resulting solutions

for φr, and φi. Since φr is symmetric about zero and φi is antisymmetric, the solution

on the half-domain is sufficient. These two functions were curve fit in the regions above

and below y = 3 using the relations:
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Figure C.3. Solution to the Rayleigh equation for the instability amplitude function.

y < 3 :

φr(y) = −0.005470y4 + 0.073828y3 − 0.285178y2 (C.32)

+ 0.151226y + 0.990538,

φi(y) = −0.020165y4 + 0.203970y3 − 0.741852y2 (C.33)

+ 1.019843y − 0.009734,

y > 3 :

φr(y) = 1.597986 exp(−0.442692y), (C.34)

φi(y) = 0.981717 exp(−0.453942y). (C.35)

The development above follows that of Michalke; however, all of Michalke’s relations

were rederived for the general case involving ∆U and σ, when the solutions were com-

puted. As expected, the results scale in a predictable way. That is, α does not depend

on ∆U since this is just a scaling factor applied to the velocity. Also, the value of the

eigenvalue ci appears as ci/∆U (when ∆U is included), which does not depend on ∆U .

This is interesting because it shows that the amplification factor (which determines the
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rate of growth of the instability) is proportional to ∆U . Also, when σ is included, α

appears as α/σ, which is constant for the most unstable mode. This just shows that the

period of the waves are scaled as the initial vorticity thickness is scaled. When x and

y are replaced by σy and σx and ∆U is inserted instead of using ∆U = 1, the total

perturbed stream function becomes

ψ =
∆U
2σ

ln(cosh(σy)) +
∆U
2σ

ε[φr(σy) cos(ησx)− φi(σy) sin(ησx)]. (C.36)

Here, the first term is the base velocity stream function and the second term is the stream

function of the perturbation. In this equation, η = 0.444918 is the most unstable mode

the period is P = 2π/ησ, and ε is a small number representing the fraction of the base

velocity to add as a perturbation. The velocity components are computed using Eqs.

(C.2)-(C.3). In the above equations, y is centered about zero, and x begins at zero, so,

for general domains, the x and y are first centered in applying the relations.

In the DNS simulations, the streamwise domain is equal to the period of the most

unstable mode, which then sets the vorticity thickness scaling parameter σ. In this case,

only a single vortex will fit in the domain. If the domain is set to be twice the period

of the most unstable mode and the above equations used, then two vorticies will form.

Experimentally it is known that these vorticies pair up as the flow progresses due to

amplification of, primarily, the first subharmonic of the most unstable mode. The pairing

process will occur naturally in an experiment or simulation due to the amplification of

noise, or numerical error. To speed this process, the first subharmonic of the most unstable

mode can be added to the stream function in Eq. (C.36) as a term identical to the second

term, but with η becoming η/2 and with correspondingly different eigenfunctions φr and

φi. These functions have similar shapes to those corresponding to η but are stretched

along the y-axis. The curve fits to these functions where also computed and are given by

the relations

y < 3 :

φr(y) = −0.002505y4 + 0.032325y3 − 0.138069y2 (C.37)

+ 0.079256y + 0.993696,

φi(y) = −0.012930y4 + 0.155110y3 − 0.677865y2 (C.38)

+ 1.166394y − 0.014376,
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y > 3 :

φr(y) = 1.231697 exp(−0.217780y), (C.39)

φi(y) = 1.061436 exp(−0.226491y). (C.40)

Figures C.4 and C.5 show the resulting velocity profiles and stream functions for the

case of σ = ∆U = 1, ε = 0.1, with and without the subharmonic, respectively. In Fig.

C.5, the period is twice that of the most unstable mode. The contours of ψ show that

essentially two waves have been overlaid on the initial tanh profile. The two shorter waves

will evolve into two vortices, and the longer wave essentially perturbs the left vortex up

and the right vortex down, which will result in vortex pairing. The v velocity contours

also illustrate this.
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Figure C.4. Contour plots of ψ, u, and v, from left to right, for the case of σ = 1,
∆U = 1, ε = 0.1, no subharmonic.
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Figure C.5. Contour plots of ψ, u, and v, from left to right, for the case of σ = 1,
∆U = 1, ε = 0.1, with the subharmonic.



APPENDIX D

DERIVATION OF THE CMC

EQUATIONS

There are two approaches to deriving the CMC transport equations. The first is

the decomposition method in which scalars are decomposed into a conditional mean and

fluctuation [150]. The second method proceeds through the joint PDF transport equation.

Here, the latter method is used to derive the CMC equations for soot. The derivation

follows the approach given by Klimenko and Bilger [31].

We begin with the fine grain PDF δ(Z −Y (x, t)), where δ is the Dirac delta function,

Y (x, t) is a random variable, such as a species mass fraction, and Z is the corresponding

sample space variable, which is an independent variable. The derivative of the fine grain

PDF is given by

∂δ

∂t
= − ∂

∂Z

(
δ
∂Y

∂t

)
. (D.1)

This identity is derived with the following progression (with u = Z − Y (x, t)):

dδ =
dδ

du
du =

dδ

du

(
∂u

∂Z
dZ +

∂u

∂Y
dY

)
, (D.2)

=
dδ

du
du =

dδ

du

(
∂u

∂Z
dZ +

∂u

∂Y

(
∂Y

∂t
dt+

∂Y

∂x
dx

))
,

∂δ

∂t
=
dδ

du

(
−∂Y
∂t

)
.

In the last step, the independence of t and Z is used. Now, using dδ
du = ∂δ

∂Z and noting

that ∂Y
∂t is independent of the derivative with respect to Z recovers Eq. (D.1) when ∂Y

∂t

is brought inside the derivative with respect to Z. The multidimensional fine grain PDF

is given by

ψ =
∏

i

δ(Zi − Yi(x, t)). (D.3)
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The derivative of ψ is a straightforward extension of the scalar case:

∂ψ

∂t
=

∂

∂Zi

(
ψ
∂Yi

∂t

)
, (D.4)

where index notation is used to imply summation.

The transport equation for species Yi is given by

∂Yi

∂t
= −v · ∇Yi +

1
ρ
∇ · (ρDi∇Yi) +

1
ρ
∇ · (ρ−1DT,iYi∇ lnT ) +

ωi

ρ
. (D.5)

In this equation DT,i is the thermophoretic diffusion coefficient corresponding to species

i, with no implied summation on that term. This equation is good for gaseous species

and soot moments with Yi a generic notation (Yi would be a soot mass-moment divided

by density) and DT,i set to zero to turn off thermophoresis. Equation (D.5) is inserted

into Eq. (D.4) to give

∂ψ

∂t
=

∂

∂Zi

(
ψv · ∇Yi −

ψ

ρ
∇ · (ρDi∇Yi)−

ψ

ρ
∇ · (ρ−1DT,iYi∇ lnT )− ψ

ωi

ρ

)
. (D.6)

The divergence of ψ is defined similarly to Eq. (D.4):

∇ψ = − ∂

∂Zi
(ψ∇Yi). (D.7)

Also,

v · ∇ψ = − ∂

∂Zi
(ψv · ∇Yi), (D.8)

where v is independent of Zi and is brought inside the derivative. Applying this expression

to Eq. (D.6), multiplying by density (which is independent of Zi), and applying continuity

give

∂ρψ

∂t
+∇ · (ρvψ) = − ∂

∂Zi
(ψ∇ · (ρDi∇Yi)) (D.9)

− ∂

∂Zi

(
ψ∇ · (ρ−1DT,iYi∇ lnT )

)
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− ∂

∂Zi
(ψωi) .

The first term on the right-hand side (RHS) of this equation, the diffusion term, is

reworked into an alternative form. First, in order to apply an identity to the term, the

diffusivity needs to be the same for all species. To maintain generality, however, in the

present derivation, the diffusivity is assumed to be

Di = D + (Di −D), (D.10)

where D is the uniform diffusivity. Applying this to Eq. (D.9) amounts to adding and

subtracting a term with constant diffusivity. The following substitution is made for the

diffusion term in Eq. (D.9):

∂

∂Zi
(ψ∇ · (ρDi∇Yi)) =

∂

∂Zi
(ψ∇ · (ρD∇Yi)) +

∂

∂Zi
(ψ∇ · (ρ(Di −D)∇Yi)). (D.11)

The following identity is applied:

−∇ · (ρD∇ψ) =
∂

∂Zi
(∇ · (ψρD∇Yi)), (D.12)

=
∂

∂Zi
(ψ∇ · (ρD∇Yi)) +

∂

∂Zi
(ρD∇Yi · ∇ψ),

=
∂

∂Zi
(ψ∇ · (ρD∇Yi))−

∂

∂Zi

∂

∂Zj
(ψρD∇Yi · ∇Yj).

The first term on the RHS of the last expression matches the first term on the RHS of

Eq. (D.11). Substituting the last expression in Eq. (D.12) into Eq. (D.11) and the result

into Eq. (D.9) yields

∂ρψ

∂t
+∇ · (ρvψ) = − ∂

∂Zi
(ψωi) (D.13)

− ∂

∂Zi

(
ψ∇ · (ρ−1DT,iYi∇ lnT )

)
− ∂

∂Zi
(ψ∇ · (ρ(Di −D)∇Yi))

− ∂

∂Zi

∂

∂Zj
(ψρD∇Yi · ∇Yj)

+∇ · (ρD∇ψ).
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The last term in this equation is replaced using the identity

∇ · (∇(ρDψ)) = ∇ · (ρD∇ψ) +∇ · (ψ∇(ρD)), (D.14)

to give

∂ρψ

∂t
+∇ · (ρvψ) = − ∂

∂Zi
(ψωi) (D.15)

− ∂

∂Zi

(
ψ∇ · (ρ−1DT,iYi∇ lnT )

)
− ∂

∂Zi
(ψ∇ · (ρ(Di −D)∇Yi))

− ∂

∂Zi

∂

∂Zj
(ψρD∇Yi · ∇Yj)

+∇ · (∇(ρDψ))−∇ · (ψ∇(ρD)).

The last line in this equation is considered to be small at high Reynolds number in

[31]. The last four terms on the RHS of this equation arise from the diffusion term in

Eq. (D.9). Equation (D.15) is convolved over the joint PDF (averaged) to give the joint

PDF transport equation. This is done by multiplying by the joint PDF and integrating

over the sample space. Use is made of the independence of the sample space variables

and commutivity of differentiation and integration. The averaging operation is done as

follows:

〈ρψ〉 =
∫

Y

∫
Π
ρψ(Z − Y )P (Y ,Π)dY dΠ, (D.16)

=
∫

Y

∫
Π
ρψ(Z − Y )P (Π|Y = Z)P (Y )dY dΠ,

=
∫

Y
ψ(Z − Y )P (Y )

(∫
Π
ρP (Π|Y = Z)dΠ

)
dY ,

=
∫

Y
ψ(Z − Y )P (Y )〈ρ|Y = Z〉dY ,

= 〈ρ|Y = Z〉
∫

Y
ψ(Z − Y )P (Y )dY ,

= 〈ρ|Y = Z〉P (Z),
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where Π represents the sample space of all dependencies not included in Z, and Y ,

Z, and Π are vector quantities. Averaging Eq. (D.15) gives the joint PDF transport

equation:

∂〈ρ|Z〉P
∂t

+∇ · (〈ρv|Z〉P ) = − ∂

∂Zi
(〈ωi|Z〉P ) (D.17)

− ∂

∂Zi

(
〈∇ · (ρ−1DT,iYi∇ lnT )|Z〉P

)
− ∂

∂Zi
(〈∇ · (ρ(Di −D)∇Yi)|Z〉P )

− ∂

∂Zi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )

+∇2(〈ρD|Z〉P )−∇ · (〈∇(ρD)|Z〉P ).

The CMC equation is derived by multiplying Eq. (D.17) by one of the Zi, say ZY s, and

integrating overall all Zi except the mixture fraction sample space variable η, where η is

included in Z. This is illustrated below for the first term in Eq. (D.17):

∫
ZY s

∂〈ρ|Z〉P (Z ′, η)
∂t

dZ ′ =
∂

∂t

∫
ZY s〈ρ|Z〉P (Z ′, η)dZ ′, (D.18)

=
∂

∂t

∫
ZY s〈ρ|Z〉P (Z ′|η)P (η)dZ ′,

=
∂

∂t

(
P (η)

∫
ZY s〈ρ|Z〉P (Z ′|η)dZ ′

)
,

=
∂

∂t
(〈ρYs|η〉P (η)).

Here, Z ′ denotes the sample space not including η. There are eight terms in Eq. (D.17).

A similar operation as just shown is applied to terms 2, 7, and 8 in Eq. (D.17). Term 3

in the same equation, the reaction source term, is treated as

−
∫
ZY s

∂

∂Zi
(〈ωi|Z〉P )dZ ′ = −

∫
Ẑ

∫
ZY s

ZY s
∂

∂Ẑi

(〈ωi|Z〉P )dZY sdẐ (D.19)

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂ZY s
(〈ωY s|Z〉P )dZY sdẐ

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂η
(〈ωξ|Z〉P )dZY sdẐ,

where Ẑ is everything in Z ′ except ZY s. On the left-hand side, integration by parts shows

that the first term is zero since ZY s is independent of Ẑi. The third term is zero since the
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mixture fraction reaction source term is neglected. If the reaction source is not neglected,

then the term remains, and the derivative with respect to mixture fraction is moved

outside the integration to yield ∂
∂η (〈Ysωξ|η〉P (η)). Integration by parts is performed on

the second term to give

−
∫
ZY s

∂

∂Zi
(〈ωi|Z〉P )dZ ′ = 〈ρωY s|η〉P (η), (D.20)

where a progression similar to Eq. (D.18) has been used. Terms 4 and 5 in Eq. (D.17)

are computed similarly to term 3 in Eq. (D.17). In term 5 in Eq. (D.17), if the uniform

D is taken to be Dξ, the term becomes

〈∇ · (ρ(Ds −Dξ)∇Ys)|η〉P (η). (D.21)

If the uniform D is taken to be Ds, the term becomes

− ∂

∂η
(〈∇ · (ρ(Dξ −Ds)∇ξ)Ys|η〉P (η)). (D.22)

Equations (D.21) and (D.22) are the analog of the last two terms on the RHS of Eq.

(D.19), respectively.

Term 6 in Eq. (D.17) is the most complicated of the terms. The averaging of the

term gives

−
∫
ZY s

∂

∂Zi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )dZ ′. (D.23)

There are four interesting types of terms that arise from expansion of the summation

implied by the index notation. These terms are given by

−
∫
ZY s

∂

∂Zi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )dZ ′ = (D.24)

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂η

∂

∂η
(〈ρD∇ξ · ∇ξ|Z〉P )dZY sdẐ

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂ZY s

∂

∂ZY s
(〈ρD∇Ys · ∇Ys|Z〉P )dZY sdẐ

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂ZY s

∂

∂η
(〈2ρD∇Ys · ∇ξ|Z〉P )dZY sdẐ . . .
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−
∫

Ẑ

∫
ZY s

ZY s
∂

∂Ẑi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )dZY sdẐ.

Integrations are carried out over the bounds −∞ to ∞, and the PDF is zero at these

bounds. The second term on the RHS is zero because of the bounds of integration after

integrating by parts. The fourth term is also zero when integrating by parts since ZY s is

independent of Ẑ. In the first term, the derivatives with respect to η are moved outside

the integral, and the integration is performed to yield

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂η

∂

∂η
(〈ρD∇Yi · ∇Yj |Z〉P )dZY sdẐ = (D.25)

− ∂2

∂η2

(
〈ρD(∇ξ)2Ys|η〉P (η)

)
.

In the third term in Eq. (D.24), the derivative with respect to eta is brought outside the

integral, and the result is integrated by parts to yield

−
∫

Ẑ

∫
ZY s

ZY s
∂

∂ZY s

∂

∂η
(〈ρD∇Yi · ∇Yj |Z〉P )dZY sdẐ = (D.26)

− ∂

∂η
(〈2ρD∇Ys · ∇ξ|η〉P (η)) .

In this equation and Eq. (D.24), the factor of 2 arises from symmetry.

The final result of multiplication of Eq. (D.17) and integrating over Z ′ is given below,

when each of the terms are collected (here, the uniform D is taken as Ds):

∂〈ρYs|η〉P (η)
∂t

+∇ · (〈ρYsv|η〉P (η)) = 〈ωY s|η〉P (η) (D.27)

+ 〈∇ · (ρYsDT,i∇ lnT )|η〉P (η)

− ∂

∂η
(〈∇ · [ρ(Dξ −Ds)∇ξ]Ys|η〉P (η))

− ∂2

∂η2

(
〈ρDs(∇ξ)2Ys|η〉P (η)

)
+

∂

∂η
(〈2ρDs(∇Ys∇ξ)|η〉P (η))

+∇2(〈ρDsYs|η〉P (η))−∇ · (〈∇(ρDsYs)|η〉P (η)),

which is the CMC soot transport equation examined in Chapter 7.
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