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This work is a parametric study of the fluxes of heat and salt across unsheared and 
sheared double-diffusive interfaces using one-dimensional-turbulence (ODT) simulations. 
It is motivated by the need to understand how these fluxes scale with parameters re-
lated to the fluid molecular properties and background shear. Comparisons are made 
throughout with previous models and available measurements.

In unsheared interfaces, ODT simulations show that the dimensionless heat flux Nu 
scales with the stability parameter Rρ, Rayleigh number Ra, and Prandtl number P r as 
Nu ∼ (Ra/Rρ)0.37±0.03 when P r varies from 3 to 100 and Nu ∼ (Ra/Rρ)0.31P r0.22±0.04 

when P r varies from 0.01 to 1. Here Ra/Rρ can be seen as the ratio of destabilizing and 
stabilizing effects. The simulation results also indicate that the ratio of salt and heat 
fluxes Rf is independent of P r, scales with the Lewis number Le as Rf ∼ Le0.41±0.04 

when Rρ is large enough, and deviates from this expression for low values of Rρ, when 
the interface becomes heavily eroded.

In sheared interfaces, the simulations show three flow regimes. When Ri ≪ 1 shear-
induced mixing dominates, the heat flux scales with the horizontal velocity difference 
across the interface, and Rf = Rρ. Near Ri ∼ 1 the heat and salt fluxes are seen to 
increase abruptly as the shear increases. The flow structure and scaling of the fluxes are 
similar to those of unsheared interfaces when Ri ≫ 1.

1. Introduction

1.1. Background

Double-diffusive convection occurs in a fluid when two of the fluid components that have
opposing effects on the vertical density field, which remains stable on average, have very
different molecular diffusivities. The component that is unstably stratified drives the con-
vection, while the stably stratified component hinders it. In the fingering regime of double
diffusive convection the slower diffusing component (salt) is unstably stratified, while in
the diffusive regime the component that diffuses faster (temperature) is unstably strat-
ified. The present work is a study of the diffusive regime. This regime is also called the
oscillatory regime, thermosolutal or thermohaline convection, or semi-convection. This
form of convection is characterized by a staircase structure formed by well-mixed con-
vecting layers separated by density interfaces (Turner (1979)). Such interfaces are called
double-diffusive interfaces. Double-diffusive convection in the diffusive regime occurs, for
example, in the Arctic and Southern Oceans, in regions where the melting ice releases
cold fresh water over denser warm salty water; in geothermally-heated salty lakes, where
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the bottom heating acts against salt stratification; and in solar ponds, where solar energy
is stored in an underlying hot brine (cf. Turner (1974)). This regime of double-diffusion is
believed to be important in massive stars (Merryfield (1995); Paparella et al. (2002)) and
giant planets (Chabrier & Baraffe (2007)). Therefore, knowing the parametric dependence
of the fluxes of heat and salt across double-diffusive interfaces could be of importance, for
example, to estimate the flux of heat to the surface of the Arctic and Southern Oceans;
in the design of solar ponds; and to calculate the speed at which massive stars and giant
planets evolve. The present is a study of this parametric dependence.

1.2. Previous work and present objectives

Within the framework of the Boussinesq approximation (§ 2), the parametric dependence
of the fluxes of heat FT and salt FS across double-diffusive interfaces between well-mixed
convecting layers of total depth h can be expressed as

Nu = F (t∗, Rρ, Ra,Ri, Pr, Le) , Rf = G(t∗, Rρ, Ra,Ri, Pr, Le) , (1.1)

where F and G are functions. Throughout this work FT is termed a heat flux though it
is defined by FT = H/(ρ0cp), where H is the heat flux, ρ0 is a reference density, and cp
is the specific heat. The dimensionless dependent variables are the Nusselt number Nu
and the ratio of buoyancy fluxes Rf , which are defined by

Nu =
FT

κT∆T/h
, Rf =

βSFS
βTFT

, (1.2)

where κT is the thermal diffusivity, ∆T is the difference in temperature across the inter-
face, and βT and βS are respectively the coefficients of thermal expansion and salinity
contraction. The dimensionless independent variables are a dimensionless time t∗, the
stability parameter Rρ, Rayleigh number Ra, Richardson number Ri, Prandtl number
Pr, and the Lewis number Le. These are defined by

Rρ =
βS∆S

βT∆T
, Ra =

gβT∆Th3

νκT
, Ri =

g(∆ρ/ρ0)h

∆U2
, P r =

ν

κT
, Le =

κS
κT

, (1.3)

where ∆S, ∆ρ, and ∆U are, respectively, the salinity, density, and velocity steps across
the interface, g is the gravitational acceleration, ν is the fluid kinematic viscosity, and
κS is the salt diffusivity. In addition Nu and Rf may depend on boundary conditions.

The above parametric dependence has been studied in double-diffusive interfaces with
no background shear in various experimental and theoretical investigations, e.g. Turner
(1965); Crapper (1975); Marmorino & Caldwell (1976); Linden & Shirtcliffe (1978); Fer-
nando (1989); Worster (2004). The prototypical experiment is that in which a layer
of saline water with overlying fresh water is heated from below in an insulated tank.
By assuming quasi-steady-state conditions and a heat flux FT independent of the layer
thickness h, dimensional arguments suggest that (1.1) becomes Nu/Ra1/3 = F (Rρ) and
Rf = G(Rρ) for fixed values of Pr and Le (Turner (1965)). Experiments show that
F (Rρ) decreases with increasing Rρ, as the stratification becomes stronger and slows
down the convection. They also show that G(Rρ) remains approximately constant when
Rρ lies between 2 and Le−1/2, in a regime where molecular effects are important, while
it increases with decreasing Rρ as Rρ → 1, as turbulent transport dominates (e.g. Turner
(1965); Crapper (1975); Marmorino & Caldwell (1976)).

Even though the scaling Nu ∼ Ra1/3 is widely assumed, the only support for it is the
experimental work by Marmorino & Caldwell (1976), which reports Nu ∼ Ra0.37±0.1 (cf.
Kelley et al. (2003)). Our first objective is to determine how the fluxes of heat and salt
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scale with Ra in the range Ra = 106 − 1010 (§ 3.3 and § 3.4). We will see that our results
are close to those obtained via dimensional reasoning.

Apart from the heat/salt system at ambient conditions (Pr ≈ 7, Le ≈ 0.01), other sys-
tems of interest are, for example, the heat/salt system at Arctic conditions (Le ≈ 0.005,
cf. Kelley et al. (2003)), and the heat/H-He system in giant planets (Pr ≈ 0.01 − 1 and
Le ≈ 0.001 − 0.1, cf. Chabrier & Baraffe (2007)) and stars (Pr ∼ 10−5 and Le ∼ 10−8,
cf. Merryfield (1995)). It is unclear, however, how the fluxes in the well-studied heat/salt
system at ambient conditions compare with those in other systems. This is because the
dependence of the fluxes on Pr has not been studied and there are contradictory exper-
imental results on how Rf depends on Le (cf. Turner (1965); Shirtcliffe (1973); Takao
& Narusawa (1980)). Our second objective is, therefore, to explore in more depth than
previous studies the dependence of the fluxes on molecular fluid properties, represented
by Pr and Le, in the ranges Pr = 0.01 − 100 and Le = 0.001− 0.1 (§ 3.5 and § 3.6).

In oceanic double-diffusive interfaces the turbulence is usually generated by both the
unstably stratified temperature and by shear (Crapper (1976)). Micro-structure mea-
surements have shown this mixture of double-diffusive convection and shear turbulence
(Larson & Gregg (1983); Padman & Dillon (1991); Inoue et al. (2007)). There are, how-
ever, no studies of sheared double-diffusive interfaces under controlled conditions. Only
recently has a model been proposed for the study of these interfaces (Canuto et al.
(2008a)). Predictions from this model for the fingering regime agree well with ocean ob-
servations, but predictions for the diffusive regime have not yet been compared to other
results. Such comparison is important since models like that of Canuto et al. (2008a)
are ultimately used in ocean circulation models. Thus, our third and final objective is to
study the effect of background shear on the heat and salt fluxes across double-diffusive
interfaces (§ 4). Our results will show a transition near Ri ∼ 1 between a shear dominated
regime and a double-diffusion-dominated regime. We will also show how the heat and
salt fluxes scale in these regimes.

1.3. Current approach

To address the objectives above we conduct one-dimensional-turbulence (ODT) simula-
tions (Kerstein (1999a)). These objectives are very challenging to address with laboratory
experiments and direct numerical simulations (DNS). ODT simulations are fully resolved,
unsteady, stochastic simulations that emulate Navier-Stokes turbulence (§ 2). These sim-
ulations have two key features. First, the velocity vector and other properties of the flow
reside on a one dimensional (1D) domain, which can be thought of as a line of sight
through the three-dimensional flow field. This 1D formulation allows full resolution of
the interaction between the large scales and the molecular transport scales with compu-
tationally affordable simulations, but restricts its application, in the present context, to
horizontally homogeneous flows. Second, because vortical overturns cannot occur on a 1D
domain, turbulent advection is represented using a stochastic mapping process. In com-
parison, while Reynolds-Averaged Navier-Stokes simulations and large-Eddy Simulations
model the small-scale phenomena and retain the three-dimensional (3D) representation
of the flow, ODT resolves all the scales of motion but models 3D turbulence. Many fea-
tures of various types of turbulent flows have been captured using ODT (e.g. Kerstein
(1999a,b); Dreeben & Kerstein (2000); Kerstein et al. (2001); Echekki et al. (2001); Wun-
sch & Kerstein (2001, 2005); Ashurst & Kerstein (2005); Kerstein & Wunsch (2006)). Of
relevance to the present work are previous findings showing the ability of ODT to repro-
duce known scalings in flows where buoyancy is important (Kerstein (1999a); Dreeben
& Kerstein (2000); Wunsch & Kerstein (2001, 2005)).

In the present context, ODT is well suited to study double-diffusive convection in the
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diffusive regime, which is characterized by a strong coupling between turbulent advection
and molecular transport and can be assumed to be horizontally homogeneous. This mo-
tivated a previous study of this type of convection with ODT, which demonstrated that
ODT simulations capture the formation and evolution of a diffusive staircase as observed
in bottom-heated experiments, and predict fluxes of heat and salt consistent with those
observed in various experiments (Kerstein (1999b)).

In summary, the present is a parametric study of the fluxes of heat and salt across
double-diffusive interfaces. We use results from ODT simulations to determine the ap-
proximate scaling of these fluxes with the dominant parameters and identify transition
regions in the parameter space. While previous studies, including the work by Kerstein
(1999b), focused on unsheared interfaces within a limited parameter space, we consider
a broader parameter space, including the effect of background shear, whose investigation
is enabled by the more recent version of ODT described in Kerstein (2009). Next, this
version of ODT is discussed in § 2, and results for unsheared and sheared interfaces are
presented respectively in § 3 and § 4.

2. One-dimensional-turbulence (ODT) model

2.1. Overview

The Boussinesq approximation is invoked by assuming the relative density difference
ρ/ρ0 to be negligibly small except in terms multiplied by gravity g. The density ρ is
represented with ρ/ρ0 = βSS − βTT , where ρ, T , and S are deviations from reference
values. The velocity vector (u1, u2, u3) = (u, v, w), as well as ρ, T , and S are defined in
a 1D domain along the vertical coordinate z, where 0 6 z 6 h. These flow properties are
advanced in time by integrating the following equations representing molecular transport,

∂ui
∂t

= ν
∂2ui
∂z2

,
∂T

∂t
= κT

∂2T

∂z2
,
∂S

∂t
= κS

∂2S

∂z2
, (2.1)

for i = 1, 2, 3, and through a stochastic process representing turbulent advection. This
stochastic process consists of a random sequence of vortical overturns or eddy events.
The process is specified by defining the operations performed during an eddy event and
the sampling of such events, i.e. the rules governing the time scale τ , length scale l, and
location z0 of the eddy events. These operations and sampling rules are discussed next.

2.2. Operations during an eddy event

An eddy event consists of two operations. One is a triplet mapping of ui, T , and S
representing the vertical displacement of fluid elements by a notional eddy. The second is
a modification of ui representing the energy redistribution between velocity components
induced by pressure and the effect of buoyancy forces. These operations are represented
symbolically as

ui(z) → ui(f(z)) + ciK(z) , T (z) → T (f(z)) , S(z) → S(f(z)) , (2.2)

where the (continuous) triplet mapping operation f(z) is defined by

f(z) = z0 +















3(z − z0) if z0 6 z 6 z0 + l/3 ,
2l− 3(z − z0) if z0 + l/3 6 z 6 z0 + 2l/3 ,
3(z − z0) − 2l if z0 + 2l/3 6 z 6 z0 + l ,
z − z0 otherwise ,

(2.3)
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and the addition of ciK(z) represents velocity changes due to pressure gradients and
buoyancy forces. According to this prescription, fluid at location f(z) is moved to location
z by the mapping operation, thus defining the map in terms of its inverse f(z).

The effect of the triplet map on a flow property profile defined in [z0, z0+l] is to replace
the profile with three compressed images of the original with the middle image flipped.
This is how the compressive and rotational motions observed in turbulent flows are repre-
sented in ODT (Kerstein (1999a)). The triplet map is adopted because it is the simplest
map satisfying the following physical requirements: all moments of the flow properties

are preserved by the map, i.e.
∫ h

0
sn(z) dz is preserved, where s = u, v, w, ρ, T, S; prop-

erty profiles remain continuous; and changes in the property gradients of order greater
than one are prevented (Kerstein (1999a)). The dependence of model results on the use
of either the triplet map or another map satisfying the physical requirements has been
addressed in a different context (Kerstein (1991)). Qualitative behaviors are unaffected
and quantitative differences are absorbed in the adjustment of model parameters.

The form of the function K(z) and the constants ci = (cu, cv, cw) in (2.2) are now
discussed (cf. Kerstein et al. (2001), Wunsch & Kerstein (2005), and McDermott (2005)
for additional details). The operations (2.2) induce a change of kinetic energy associated
with a velocity component i of

∆KEi =
ρ0

2

∫ h

0

[

(ui(f(z)) + ciK(z))2 − u2

i (z)
]

dz , (2.4)

and a change in potential energy of

∆PE = g

∫ h

0

(ρ(f(z)) − ρ(z))z dz . (2.5)

Energy conservation requires
∑

i ∆KEi = −∆PE. Notice in (2.4) that ∆KEi = 0
if ciK(z) = 0. Hence, the terms ciK(z) are needed to conserve energy in stratified
flows. Furthermore, the terms ciK(z) allow the introduction of a pressure scrambling
mechanism that redistributes the kinetic energy among different velocity components
while conserving energy. In other words, the addition of ciK(z) in (2.2) allows changes in
∆KEi while enforcing

∑

i ∆KEi = −∆PE. The function K(z) is conveniently defined
by

K(z) = z − f(z) , (2.6)

which is the simplest continuous function that modifies property profiles only in the eddy

region (K(z) = 0 outside [z0, z0 + l]) while conserving momentum (
∫ h

0
K(z) dz = 0). The

function K(z) represents the vertical displacement of fluid elements z − f(z) induced by
a triplet map. By using the definitions (2.3) and (2.6), the expressions (2.4) and (2.5)
become, after some algebraic manipulation,

∆KEi =
2

27
ρ0l

3c2i + ρ0l
2ui,Kci , (2.7)

and,

∆PE = gl2ρK , (2.8)

where

sK =
1

l2

∫ h

0

s(f(z))K(z) dz , (2.9)

with s = u, v, w, ρ, T, S and ρK/ρ0 = βSSK−βTTK . The pressure scrambling mechanism
is modeled by assuming ∆KEi = α(−Qi +Qj/2 +Qk/2), where j and k denote indices
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other than i, α is a constant, and Qi is a function of ui,K only. The function Qi is
assumed to be equal to the maximum amount of energy that can be extracted from a
given velocity component, which is obtained by differentiating ∆KEi with respect to ci
in (2.7), and equals (27/8)ρ0lu

2

i,K . In addition, equipartition of energy among the velocity
components gives α = 2/3. Finally, a quadratic equation for each of the constants ci is
obtained by using the previous considerations, together with equations (2.7) and (2.8),
and

∑

i ∆KEi = −∆PE. The solution of these quadratic equations give

ci =
27

4l



−ui,K + sgn(ui,K)

(

1

3

(

∑

i

u2

i,K −
8

27
gl
ρK
ρ0

))1/2


 , (2.10)

where the summation is over the three velocity components, and sgn is the sign function.

2.3. Sampling of eddy events

Each event is characterized by a length scale l and a location z0 which are randomly
sampled from a joint probability density function p(l, z0; t) defined by

p(l, z0; t) =
λ(l, z0; t)

∫ h

0

∫ h

0
λdl dz0

. (2.11)

p(l, z0; t) dl dz0 can be interpreted as the probability of occurrence of an eddy event of size
within the range [l, l+dl] with its lower boundary located within the range [z0, z0 +dz0].
∫ h

0

∫ h

0
λdl dz0 is the overall event rate.

The eddy rate distribution λ is given by

λ =
C

l3

(

∑

i

u2

i,K −
8

27
gl
ρK
ρ0

− Z
(ν

l

)2

)1/2

, (2.12)

if the expression inside the square root is positive, and λ = 0 otherwise. In (2.12), the
summation is over the three velocity components, and C and Z are model parameters,
discussed further in § 2.5. Eddy events are sampled independently, but the time depen-
dence of λ correlates these events in time. This feature of ODT generates an energy
cascade, as explained in Kerstein (1999a).

The eddy rate distribution (2.12) is obtained as follows (cf. McDermott (2005) and
Kerstein (2009) for more details). Recognizing that λ has units of length−2 × time−1,
and using the eddy length scale l, an eddy mass ρ0l, and an eddy energy E, dimensional
reasoning gives λ ∼ (E/(ρ0l))

1/2/l3. This scaling relationship establishes the dependence
between the eddy sampling process, related to λ and l, and the properties of the flow,
embodied in E. The eddy energy E is assumed to be the maximum energy extractable
using (2.7) upon completion of the eddy event, which equals

∑

iQi from the previous
discussion, minus the eddy-induced potential-energy change given by (2.8). Hence the
following expression for λ is obtained

λ ∼
1

l3

(

∑

i

u2

i,K −
8

27
gl
ρK
ρ0

)1/2

. (2.13)

The eddy rate expression (2.12) is finally obtained by using a proportionality constant
C and by inserting inside the square root in (2.13) the term −Z(ν/l)2, to prevent the
occurrence of eddies with a time scale longer than the viscous time scale l2/ν.

Physically, the eddy rate expression incorporates into ODT the effects of stratifica-
tion, shear, and viscous damping on the turbulent fluctuations, with C determining the
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generation rate. In double-diffusive convection, turbulent fluctuations are generated by
shear through

∑

i u
2

i,K , damped by viscous action through −Z(ν/l)2, and suppressed
(generated) by the salinity (temperature) field through −(8/27)gl(ρK/ρ0), recalling that
(ρK/ρ0) = βSSK − βTTK .

2.4. An assessment of ODT

ODT has reproduced a variety of turbulence phenomena with a concise representation
of the interaction between molecular transport, advection, and buoyant forcing. It has
captured, for example, the Kolmogorov cascade for velocity fluctuations in homogeneous
isotropic turbulence (Kerstein (1999a)). Nonetheless, ODT is a model that seeks to em-
ulate Navier-Stokes turbulence on a one dimensional domain. Thus, its results need to
be interpreted with care, and compared with other models and available measurements.
This approach is taken throughout the present work. Next, three limitations of ODT are
discussed.

First, ODT does not capture three dimensional coherent flow structures and their cor-
responding effects on the flow. For example, in the simulation of mixing layers and wakes,
even though ODT profiles agree reasonable well with those from DNS, the probability
density function of the (passive) scalar near the edges differs considerably between ODT
and DNS (Kerstein et al. (2001)). This disagreement is caused by the inability of ODT
to capture three-dimensional flow structures occurring in this region (Kerstein et al.
(2001)). For the present problem, ODT does not capture interfacial waves. The effect of
these waves on the fluxes across (unsheared) double-diffusive interfaces is still unclear
(Turner (1965); Linden & Shirtcliffe (1978); Fernando (1989)). Second, ODT is limited
to horizontally homogeneous flows, so it cannot be used to study the effect of geometry.
As an example, the so-called wind of turbulence of Rayleigh-Bénard convection cannot
be studied with ODT, since the geometry of the cell has an important effect on it (Wun-
sch & Kerstein (2001)). Notwithstanding the above two shortcomings, a comparison of
ODT results with those from experiments or DNS can be used to determine how sensi-
tive is a particular observable of the flow to the effect of flow structures and geometry.
For example, the amplitude of the temperature fluctuations in the core of a Rayleigh-
Bénard cell may depend on the cell geometry (Wunsch & Kerstein (2001)). However, the
shape of the probability density function of these fluctuations is seen to be the same in
experiments and ODT, consistent with experimental indications of insensitivity to cell
geometry (Wunsch & Kerstein (2001)). Finally, a third shortcoming of ODT is that the
model constants C and Z need adjustment for ODT results to agree with those from ex-
periments or DNS. As an example, in wall bounded flows, Z needs adjustment for ODT
to properly capture the transition from the viscous sublayer to the log layer (Schmidt
et al. (2003)). This adjustment is needed because viscous effects are very important near
the wall, and Z is the parameter that controls the suppression of the smallest eddies in
the flow by viscous action, cf. § 2.5. It is remarkable, nonetheless, that with only two
model constants ODT can capture a wide variety of flow behavior. In the following, we
will see that the effect of C and Z on scaling exponents is not large.

2.5. Numerical implementation

The ODT model consists of the following components: the flow boundary and initial
conditions; the diffusion equations (2.1); the eddy operations (2.2); the sampling of eddy
occurrence times and, using (2.11), eddy sizes and locations; the discrete implementation
of the diffusion equations and the eddy operations; and the two free parameters C and
Z.

Two flow configurations are considered. In the jump-periodic configuration the follow-
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ing boundary conditions are applied to the diffusion equations (2.1):

u(t, z = h) = u(t, z = 0) + ∆U , v(t, z = h) = v(t, z = 0) , w(t, z = h) = w(t, z = 0) ,

T (t, z = h) = T (t, z = 0) + ∆T , S(t, z = h) = S(t, z = 0) + ∆S .

For the rundown configuration the following boundary conditions are used:

∂s

∂z
|t,z=0 =

∂s

∂z
|t,z=h = 0 ,

where s = u, v, w, T, S. In addition, in the jump-periodic (rundown) configuration triplet
maps are allowed (prevented) across z = 0 and z = h. For the initial conditions given
below, the flow is seen to reach a quasi-steady state with jump-periodic boundary condi-
tions, while it remains unsteady in the rundown configuration. In contrast with previous
studies, which use either a heated bottom or a rundown configuration (cf. § 1), most of the
results presented here are for the jump-periodic configuration. Because they are obtained
from quasi-steady conditions, these results are not contaminated by time-dependent ef-
fects, and can be compared with available steady-state theories. Selected results for the
rundown configuration are presented in § 3.4, though.

The initial conditions are:

u(t = 0, z) = ∆U

(

1

2
+

1

2
tanh

(

z − h/2

δu/2

))

+ r ,

v(t = 0, z) = 0 , w(t = 0, z) = 0 ,

T (t = 0, z) = ∆T

(

1

2
−

1

2
tanh

(

z − h/2

δT /2

))

,

S(t = 0, z) = ∆S

(

1

2
−

1

2
tanh

(

z − h/2

δS/2

))

,

where δu = δT = 0.1h, δS = 0.01h, and r is a small random perturbation. We observe only
a slight dependence of the observables studied here on the choice of δu, δT , δS , and r, the
shear direction, and the use of profiles similar to the ones above but with functions other
than tanh. With these initial conditions, a single double-diffusive interface is considered,
as done in previous studies (e.g. Turner (1965); Crapper (1975); Marmorino & Caldwell
(1976); Linden & Shirtcliffe (1978); Fernando (1989); Worster (2004)). While the study
of a single interface is more fundamental, that of multiple interfaces is of more practical
relevance, and should be considered in the future (cf. § 5).

Direct sampling of eddy events requires the reconstruction of the probability density
function p(l, z0; t) as the flow evolves. This costly operation is avoided by using a Monte
Carlo method called thinning (Law & Kelton (2000); Kerstein (1999a)). The application
of this method in ODT is described elsewhere (cf. Kerstein (1999a); McDermott (2005)).

The diffusion equations and the triplet map are implemented using a first-order finite-
volume scheme with a non-uniform adaptive mesh (cf. Krishnamoorthy (2008); Ricks
et al. (2010) for more details). This approach allows accurate resolution of regions of the
flow with very large property gradients. Within this framework, the flow property profiles
within a given finite volume are uniform, and the finite volumes can be split, displaced,
and merged. Additionally, the application of the triplet map involves three steps. First,
the finite volumes containing z0 and z0 + l are split at these respective locations. Second,
each finite volume in the eddy region [z0, z0 + l] is split into three identical volumes, each
of width one-third of the width of the original volume. Third, the new finite volumes
are displaced to mimic the alteration of the property profiles given by the continuous
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triplet map (2.3). Triplet maps are implemented only for eddies spanning at least six
finite volumes. This finite-volume triplet map retains the characteristics of its continuous
counterpart.

The splitting and displacement of finite volumes or cells by the triplet map may produce
a mesh structure that can degrade computational accuracy and efficiency. Hence, the last
component of the discrete implementation is a mesh management strategy. With this
strategy, the splitting and merging of finite volumes is performed considering the following
factors: cell size, gradient resolution, curvature resolution, and cell size variation. Grid
cells that are below a specified minimum size are merged with neighboring cells until
the cell is enlarged above the minimum size. Offending cells are treated in order of
increasing size, and merging is done with the smaller of the two neighboring cells. This
is done in a manner that precludes any directional bias in the merging. Cells are merged
if the variation in a specified property field (e.g. velocity) is below a specified fraction
of the total variation in that field. The same is done for changes in the slope of the
profile. Cells are split if the variation in the property field, or its slope, is greater than
a specified fraction of the total variation in that field. Finally, cells are split in order to
maintain the ratio of adjacent cell sizes (size of the larger of a pair of cells divided by
the size of the smaller cell of the pair) between 1 and 2.5. This procedure results in an
efficient computational grid, with good resolution of property fields with high gradients
or regions of high curvature, while avoiding abrupt variations in the grid. Five mesh
adaption parameters are specified with the current approach (small cell and upper and
lower thresholds for gradients and curvature). The parameters used here are selected so
that the ODT solutions are approximately independent of them, i.e. the results presented
here are approximately grid independent. A similar mesh management strategy was used
and verified by Krishnamoorthy (2008).

The model parameter C determines the strength of the turbulence in ODT. Low values
of C, say C < 0.1, give a low rate of occurrence of eddies, from equations (2.11) and
(2.12), and consequently, almost no eddies are implemented. In other words, when C is
small enough the flow is laminar. Such a condition is of no interest here. On the other
hand, large values of C, produce a lot of eddies, and thus, the flow is very turbulent. We
observe that for C > 1000 so many eddies are implemented that the simulations become
computationally very expensive for the ranges of Ra and Ri considered. Therefore, we
vary C over C = 1 − 100 to test the results presented here for their sensitivity to C.
The viscous cutoff parameter Z controls the suppression of the smallest eddies of the
flow by viscous action. Notice in equation (2.12) that for fixed Z and small enough eddy
size l, the term inside the square root can become negative, in which case the eddy is
not implemented. As with small values of C, large values of Z, say Z > 1000, produce
a laminar flow, of no interest here. We observe that the variation of Z when Z < 0.001
has almost no effect on the flow. Thus, we consider the range Z = 0.01− 100 to test the
results presented here for their sensitivity to Z.

The ODT model is made dimensionless for numerical simulation by using h, h2/ν, and
ρ0 as length, time, and density scales, respectively, and by making the temperature and
salinity dimensionless with βT and βS .

2.6. ODT observables

ODT simulations generate flow realizations, i.e. time sequences of instantaneous snap-
shots of the flowfield. For a quasi-steady flow only one realization is needed to obtain a
time average of an observable. On the other hand, when the flow is transient, an ensemble
of realizations is used, from which an observable is averaged for each time t.

In ODT, for quasi-steady flows, the turbulent kinetic energy per unit mass TKE is
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calculated with

TKE =
1

2

∑

i

(u′i)
2 , (2.14)

and the viscous dissipation ε is given by

ε = ν
∑

i

(

∂u′i
∂z

)2

, (2.15)

where u′i = ui − 〈ui〉t, and 〈 〉t denotes a time average. The time and spatial average of
TKE is used to define a Reynolds number as follows:

Re =
(〈〈TKE〉z〉t)

1/2h

ν
, (2.16)

where 〈 〉z denotes a spatial average. This average is taken away from the interface where
the velocity fluctuations are damped. Notice that Re is not an independent variable but
an observable representing a measure of the velocity fluctuations induced by thermal
convection. Similarly, a time and spatial average of ε is used and is denoted by 〈〈ε〉z〉t.

The vertical flux Fs of the flow property s is expressed as Fs = F diffs +F advs , where s =
u, T, S, and F diffs and F advs are respectively the diffusive and advective fluxes of s. Here
Fs, F

diff
s , and F advs represent fluxes that are temporally averaged over a time interval

∆t, and spatially averaged along computational domain. F diffs is found by temporally
and spatially averaging the diffusive fluxes −κs(∂s/∂z) across the finite-volume faces,
where κs = ν, κS , κT . The advective flux F advs is produced by the vertical displacement
of fluid elements induced by triplet maps, and can be interpreted as the ODT analogue
of 〈〈w′s′〉z〉t calculated in a Navier-Stokes simulation. This flux is calculated with

F advs =
1

h∆t

∑

eddies

∫ h

0

s(f(z))K(z) dz ,

where
∑

eddies denotes a summation over all the eddies implemented during the time
interval ∆t. Recalling that K(z) represents the vertical displacement of fluid elements
induced by a triplet map, this expression follows from the assumed spatial homogeneity
and the definition of the flux of s as 1/∆t times the net transfer of property s across any
location z during ∆t.

With jump-periodic boundary conditions the fluxes FT and FS are observed to be
approximately spatially uniform (not shown). In the rundown configuration, for a given
time, these fluxes decrease approximately linearly from a maximum value at z/h ≈ 0.5
to a value of zero at z/h = 0 and z/h = 1 (not shown). Thus, the spatial averaging has
no effect on how FT and FS scale with the governing parameters in either configuration.

Figure 1 shows a typical time variation of the fluxes for the jump-periodic configuration.
Notice in figure 1a that, after an initial transient, the heat flux reaches a quasi-steady
state, where it fluctuates around a mean value. Other observables were seen to behave
similarly (not shown). Throughout the present work the fluxes and other observables are
time averaged during this quasi-steady state for the jump-periodic configuration. On the
other hand, because the flux is unsteady in the rundown configuration, the fluxes are
ensemble averaged. This is further discussed in § 3.4.

2.7. Verification

For the present application, the variable-mesh code developed was tested for accuracy
and consistency by verifying its results with those from the uniform-mesh code BasicODT
(Kerstein (2007)). Figure 2 shows the ratio of buoyancy fluxes Rf predicted by the code
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Figure 1. Temporal evolution in the jump-periodic configuration of (a) the dimensionless heat
flux Nu and (b) the buoyancy ratio Rf . Parameter values are Rρ = 7, Ra = 108, Le = 0.01,
Pr = 7, C = 10, and Z = 1.
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Figure 2. Comparison of the predicted ratio of buoyancy fluxes Rf between the variable-mesh
code used in the present work (diamonds) and the uniform-mesh code BasicODT by Kerstein
(2007) (circles). (a) Effect of Rρ in unsheared interfaces for Ra = 108, Le = 0.01, and Pr = 7.
(b) Effect of Ri for Rρ = 6, Ra = 5 · 108, Le = 0.0125, and Pr = 7. Model parameter values are
C = 10 and Z = 100. The largest discrepancy is 11%.

used in the present work and by BasicODT. The largest discrepancy is 11%. This is
acceptable for the study conducted here.

3. Unsheared interfaces

The representation of double-diffusive convection in the diffusive regime by ODT is
explained next in § 3.1 (cf. also Kerstein (1999b)). This is followed by discussions of the
effect of Rρ, Ra, Pr, and Le on the fluxes of heat and salt across unsheared interfaces in
§ 3.2-§3.6. Additionally, the effect of these parameters on the intensity of the convection,
represented by Re, is considered.

3.1. Flow description

Figure 3 shows the temporal sequence of the locations z0 and sizes l, denoted with ver-
tical bars, of eddy events generated during two ODT simulations at different values of
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Figure 3. Temporal sequence of the locations z0 and sizes l (vertical bars) of eddy events
generated in an ODT simulation of double-diffusive convection. Every eddy event implemented
in the simulations is shown for the time interval 0.2 (h2/ν). Parameter values are Ra = 108,
Le = 0.01, Pr = 7, C = 10, Z = 1, and (a) Rρ = 2 and (b) Rρ = 4. Notice the more aggressive
erosion of the interface at the lower value of Rρ.

Rρ. These eddy events are sampled in the manner described in § 2.3. They modify the
flow property profiles through the operations (2.2). Figure 4 shows time averaged den-
sity profiles. The characteristic structure of double-diffusive convection in the diffusive
regime is evident in figures 3 and 4: A double-diffusive interface can be seen in figure
3 as a region near z/h ≈ 0.57 where eddies are suppressed, while it appears in figure
4 as a sharp density gradient around z/h ≈ 0.57. This interface separates well-mixed
convective regions where the turbulent activity is strong, cf. figure 3, and the time av-
eraged flow properties are approximately constant with z, cf. figure 4 for density. The
unstable density stratification near the interface, noticeable in figure 4, generates con-
vective motions. The distinctive coupling between molecular transport and turbulent
convection is represented in ODT as follows. The much higher diffusivity of heat than
salt generates the unstable stratification producing turbulent convective motions. These
motions, in turn, transport the heat and salt from the edges of the interface into the
mixed regions, and may penetrate the interface, cf. figure 3a. This eroding process has
been observed in experiments (Fernando (1989)) and also in previous ODT simulations
(Kerstein (1999b)). The convective motions, thus, sharpen the temperature and salinity
profiles at the interface, modifying the molecular transport of heat and salt there. For
quasi-steady-state conditions, the transport by the convective motions is balanced by the
molecular transport, as long the interface is not heavily eroded or broken; otherwise, the
transport of heat and salt is determined by turbulent motions. The dominant transport
mechanism depends on Rρ, as discussed next, and on Ri, as discussed later in § 4.

3.2. Effect of Rρ

The stability parameter Rρ represents the ratio of the stabilizing effect of salinity and the
destabilizing effect of temperature. We consider here the range Rρ = 1.05 − 8, Pr = 7,
and Le = 0.01. The regime Rρ & 10 is not explored here but has been previously studied
with ODT (Kerstein (1999b)). ODT simulations show that when Rρ . 2 eddies heavily
erode the interface and may penetrate into it, cf. figure 3a. The interface is said to be
unstable. Thus the transport of heat and salt is due to turbulent entrainment and Rf
increases with decreasing Rρ (Turner (1979)), as can be seen in figure 5a. On the other
hand, these simulations show that when Rρ ≈ 2−8 the ratio Rf reaches an approximately
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Parameter values are Rρ = 1.5 (solid line), 2 (dashed line), 4 (dashed-dotted line), and Ra = 108,
Le = 0.01, Pr = 7, C = 10, and Z = 1. The unstable stratification near the edges of the diffusive
interface generates convective motions that “lift” the salt.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

R
ρ

R
f

(a)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

R
ρ

R
f

(b)

Figure 5. Effect of Rρ on the ratio of buoyancy fluxes Rf . (a) Simulation results for the
jump-periodic (lines) and rundown (circles) configurations. (b) Results from bottom-heated
experiments compiled by Kelley (1990) (dots) and the theoretical prediction by Linden (1974)
(solid line). Parameter values of the simulations are Ra = 108, Le = 0.01, and Pr = 7. Model
parameter values are C = 10 and Z = 1 (solid line), C = 10 and Z = 100 (dashed-dotted
line), C = 1 and Z = 1 (dotted line), C = 10 and Z = 0.01 (dashed line), and C = 10 and
Z = 1 for the rundown configuration. The fluxes are ensemble averaged over 10 realizations
with the rundown configuration. The horizontal lines denote Rf = 0.15. Both experiments and
ODT simulations show that turbulent entrainment dominates when Rρ . 2, and that molecular
processes become important when Rρ & 2, giving an approximately constant value of Rf . ODT
results for C = 10 and Z = 100 agree well with experimental data.

constant value, cf. figure 5a. This can be interpreted as a balance between convective and
molecular transport (Turner (1979) p. 277 and Linden & Shirtcliffe (1978)). The interface
is said to be stable, and the regime is referred to as the constant-Rf regime.

A comparison between figures 5a and 5b shows that the trends predicted by ODT
simulations agree with results from bottom heating experiments. Notice in these figures
that results from simulations with C = 10 and Z = 100 are consistent with those
measured in the experiments. It is difficult, however, to quantify the agreement between
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results from these ODT simulations and those from experiments when Rρ . 2 because
of the large scatter of experimental data (Kelley (1990)).

The foregoing physical picture is incorporated in the model by Linden (1974) as follows.
This model is discussed here since it incorporates the effects of Rρ and Le on Rf within a
simple theoretical framework. The fluxes of heat and salt are divided into double-diffusive
and entrainment components. The former arises from convective motions generated by
the double-diffusive instability that do not penetrate the interface, while the latter is due
to motions that heavily erode the interface and can penetrate into it. These components
are assumed to be additive. The ratio of the double-diffusive components of the salt and
heat fluxes is assumed to be equal to Le1/2 by an argument discussed later. A Ri−3/2-
entrainment law is used to model the entrainment components of the fluxes (Fernando
(1991)). The above arguments lead to:

Rf =
Cl74Rρ + Le1/2(Rρ − 1)3/2

Cl74 + (Rρ − 1)3/2
, (3.1)

where Cl74 is an adjustable constant, set to 0.05 in Linden (1974). Figure 5 shows that
(3.1) is within the results from experiments and from ODT simulations with C = 10 and
Z = 100.

By increasing Rρ the overall stratification becomes stronger and the regions of unstable
stratification at the edges of the diffusive interface become less pronounced, cf. figure 4.
Consequently, the convection is slowed down and the heat flux is reduced. Figure 6 shows
that this trend is seen in both ODT simulations and bottom-heated experiments. Notice
also in figure 6 that results from ODT simulations with C = 10 and Z = 100 in the
range Rρ ≈ 2 − 8 are within 20% of those obtained in bottom-heated experiments. A
comparison between results from ODT simulations and those from experiments when
Rρ . 2 is not made here since, in addition to the large scatter of the experimental
data discussed previously, there are mechanisms in the bottom-heated experiments when
Rρ . 2 that are not present with the configurations used in the present work. These
mechanisms include the distortion of the double-diffusive interface by the impingement
on the interface of convective elements generated at the heated bottom, and by the
grid stirring used in some of the experiments (Worster (2004)). Further comparisons
between ODT results and those from bottom-heated and rundown experiments are given
in Kerstein (1999b).

Figure 6 also shows that when Rρ . 6 results from ODT simulations with C = 10
and Z = 100 and Z = 1 agree well with predictions from the model by Linden &
Shirtcliffe (1978). This model predicts Nu as a function of Ra, Rρ, and Le by considering
a diffusive interface with regions of unstable stratification at its edges, and by assuming
steady-state conditions, so that molecular fluxes across the interface are balanced by
convective fluxes. As discussed above, this flow structure and flux balance are observed
with ODT simulations in the range Rρ ≈ 2−8. The convective flux is assumed by Linden
& Shirtcliffe (1978) to occur as a cyclic eruption of boundary layers: At the edges of the
diffusive interface unsteady boundary layers grow with time, and once a critical Rayleigh
number (based on the boundary layer thickness) is reached, the boundary layers detach,
transporting with them heat and salt into the well-mixed regions. Within this picture, as
Le increases (recall that Le = κS/κT ) more salt diffuses into the unstable regions before
they erupt, so that Rf increases with Le as Rf = Le1/2 (cf. § 3.6 and Turner (1979) p.
277). By further assuming Nu/Ra1/3 = F (Rρ, Le) the following expression for Nu is
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Figure 6. Effect of Rρ on the dimensionless heat flux Nu. (a) Simulation results for the jump-pe-
riodic (lines) and rundown (circles) configurations. (b) Empirical fit by Kelley (1990) using data
from bottom-heated experiments (solid line with error bars) and the theoretical prediction by
Linden & Shirtcliffe (1978) (solid line). The error bars denote the average deviation of 32% from
the experimental data reported by Kelley (1990). Parameter values of the simulations are the
same as in figure 5. The stratification becomes stronger as Rρ increases, and the heat flux Nu
decreases accordingly.

obtained:

Nu

Ra1/3
= Cl78

(1 − Le1/2Rρ)
4/3

(1 − Le1/2)1/3
, (3.2)

where Cl78 = 0.0587. This model has been modified to include time dependent effects
(Worster (2004)).

The ODT parameter C controls the generation rate of turbulent fluctuations, cf. § 2.3.
Hence, higher values of C are associated with higher levels of interface erosion and thus,
higher Rf and Nu. This can be seen in figures 5 and 6, where an increase of C from 1 to
10 at fixed Z produces increases of Rf and Nu. Similarly, lower values of Z produce a
more aggressive erosion of the interface (not shown) and consequently, lead to an increase
of Rf and Nu, as can be seen in figures 5 and 6, where Z is varied from 0.01 to 100.
Even though C and Z have a noticeable effect on Rf and Nu, their effect on how these
observables scale with the dominant parameters is rather small, as shown next.

3.3. Effect of Ra

The scaling of flow observables with Ra predicted by ODT simulations has been observed
to agree well with experiments and DNS in the problems of Rayleigh-Bénard convection
(Wunsch & Kerstein (2005)) and vertical slot convection (Dreeben & Kerstein (2000)).
Such scaling is discussed next for the present problem. The following parameters are
considered: Rρ = 1.05 − 6; Ra = 106 − 1010; Pr = 7; Le = 0.01; C = 1, 10; and
Z = 0.01, 1, 100.

Figures 6 and 7 show, respectively, that Nu depends on Rρ and Ra through power-
laws. Hence data from ODT simulations can be fitted to Nu ∼ (Rρ)

nRρ (Ra)nRa , where
nRρ

and nRa are exponents to be found. This expression is chosen for simplicity, even
though observables in thermal convection are seen to be better described with a linear
combination of power-laws (Grossmann & Lohse (2000)). Also notice in figure 7 that the
exponent of the power-law relating Nu to Ra depends slightly on the model parameters
C and Z. Here we fit ODT results to the previous expression for each combination of C
and Z in order to calculate the sensitivity of the exponents to these parameters. This
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Figure 7. Effect of Ra on Nu. Parameter values are Rρ = 1.05 (dots), 1.25 (circles), 2 (inverse
triangles), 3 (left triangles), 4 (crosses), Le = 0.01, and Pr = 7. Model parameter values are
C = 10 and Z = 1 (solid lines), C = 10 and Z = 100 (dashed-dotted lines), and C = 1 and
Z = 1 (dotted lines). ODT results give Nu ∼ (Ra/Rρ)

0.37±0.03 . Here (Ra/Rρ) can be seen as
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Figure 8. Nu correlation obtained for C = 10 and Z = 1. Parameter values are the same as in
figure 7.

sensitivity is expressed by the range of values over which the exponents are seen to vary.
The following correlation is obtained with least-squares minimization:

Nu ∼ (Ra/Rρ)
0.37±0.03 , (3.3)

with an average (maximum) deviation of the data of 6% (18%). The range in the exponent
denotes its sensitivity to C and Z. This notation is used throughout § 3, unless stated
otherwise. The dimensionless group Ra/Rρ is not assumed a priori but is a result of the
least squares minimization. It is interesting thatRa/Rρ appears as a dominant parameter.
This parameter can be interpreted as the ratio of destabilizing and stabilizing effects.
Figure 8 shows that the dependence of Nu on Ra and Rρ is well captured, albeit with
some systematic residual dependence on Rρ, by Nu ∼ (Ra/Rρ)

0.36 when C = 10 and
Z = 1. Here the value of the exponent is that found for these model parameters.

A comparison is now made with the scaling of Nu with Ra found in Rayleigh-Bénard
convection at large Rayleigh numbers. In this form of convection, ODT simulations show
that Nu ∼ Ra0.3±0.03 when Ra = 106 − 1012 (Wunsch & Kerstein (2005)), with the
range in the exponent denoting its sensitivity to Pr, C, and Z. Recent experiments us-
ing water (Pr ≈ 4.4) show Nu ∼ Ra0.3±0.03 when Ra = 108 − 1011 (Funfschilling et al.
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Figure 10. Re correlation obtained for C = 10 and Z = 1. Parameter values are the same as
in figure 7.

(2005)). Additionally, mixing-length ideas result in Nu ∼ Ra1/3 when Pr & 0.1 (Siggia
(1994)). This expression can also be obtained with dimensional analysis by assuming no
interaction between the top and bottom walls, so that the heat flux FT is independent
of h. In comparison, present results for double-diffusive convection suggest that Nu de-
pends on Ra through a power-law with an exponent slightly larger than that observed
in Rayleigh-Bénard convection.

The Reynolds number Re defined by (2.16) can be seen as a measure of the velocity
fluctuations induced by thermal convection. Notice in figure 9 the power-law increase of
Re with Ra. The following correlation for Re is obtained using the same approach as for
Nu:

Re ∼ Ra0.45±0.04R−0.12±0.05
ρ . (3.4)

The average (maximum) deviation of the data is 7% (15%). Figure 10 shows how (3.4)
fits the data when C = 10 and Z = 1.

With regard to the effect of Ra on Rf , we observe that Rf increases with Ra when
Rρ = 1.05 and 1.25, and that this tendency is reduced for increasing Rρ. This is shown
in figure 11 for C = 10 and Z = 1 and is seen for other model parameters (not shown).
The larger sensitivity of Rf to Ra at smaller values of Rρ may explain in part the large
scatter of experimental data observed at these values.
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Figure 11. Effect of Ra on Rf . Parameter values are the same as in figure 7. The larger
sensitivity of Rf to Ra at smaller values of Rρ may explain the large scatter of experimental
data observed at these values.

3.4. Effect of boundary conditions

Next we show that (3.3) is also valid in the rundown configuration. Because in this
configuration the flux is zero at the boundaries, the differences of temperature ∆T and
salinity ∆S across the interface decrease with time as the two fluid layers mix. As a
result, the governing parameters Rρ and Ra vary with time, cf. figure 12a, and the fluxes
decrease with time, cf. figure 12b. The initial value of Rρ is set to 1.1 and that of Ra is set
to a value in the range 107−1010. Other parameter values are Le = 0.01, Pr = 7, C = 10
and Z = 1. Since the flow is unsteady, ensemble averages over 10 realizations are used, i.e.
10 sets of temporal curves like those shown in figure 12 are ensemble averaged. The effect
of Rρ on Rf and Nu is similar in both the jump-periodic and rundown configurations, cf.
figures 5 and 6. The combined effect of Rρ and Ra on Nu for the rundown configuration
is shown in figure 13. With the data in figure 13, the least-square minimization procedure
described previously gives:

Nu ∼ (Ra/Rρ)
0.35 ,

with an average (maximum) deviation of the data of 8% (19%). The sensitivity of the
exponent to the model parameters is not explored. Figure 14 shows how this correla-
tion fits the data. This correlation is close enough to (3.3) to consider the effect of the
boundary conditions used here on the scaling of Nu with Ra negligible.

3.5. Effect of Pr

The subsequent discussion on the effect of Pr is based on data from simulations with
the following parameters: Rρ = 2 − 6; Ra = 106, 107, 108; Pr = 0.01 − 100; Le = 0.01;
C = 1, 10; and Z = 1, 100.

Figure 15 shows a power-law increase of Nu with Pr when Pr = 0.01 − 1. Hence the
simulation data is fitted to Nu ∼ (Ra/Rρ)

n(Pr)nP r , where n and nPr are exponents to
be found. The following correlation is obtained:

Nu ∼ (Ra/Rρ)
0.31Pr0.22±0.04 , when Pr = 0.01 − 1 , (3.5)

with an average (maximum) deviation of the data of 8% (17%). The sensitivity of the
exponent of (Ra/Rρ) in (3.5) to C and Z is not explored here. The value of this exponent
is for C = 10 and Z = 1. Figure 16 shows how (3.5) fits the data when C = 10 and
Z = 1 using values of the exponents obtained for these parameters. In comparison, ODT
simulations of Rayleigh-Bénard convection for Ra = 109 show Nu ∼ Pr0.23±0.03 when
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Figure 12. Temporal evolution in the rundown configuration of (a) the governing parameters
Rρ (solid line) and Ra (dashed line), and (b) the heat (upper curve) and salt (lower curve) fluxes
in arbitrary units. Initial values of Rρ = 1.1 and Ra = 108 are used. Other parameter values are
Le = 0.01, Pr = 7, C = 10 and Z = 1. Results from one unsteady simulation are shown.

10
0

10
1

10
0

10
1

10
2

R
ρ

N
u

(a)

10
6

10
7

10
8

10
9

10
10

10
0

10
1

10
2

Ra

N
u

(b)

Figure 13. Normalized heat flux Nu in the rundown configuration. Initial values used are
Rρ = 1.1 and Ra = 107 (asterisks), 108 (plus signs), 109 (inverse triangles), and 1010 (circles).
Other parameter values are Le = 0.01, Pr = 7, C = 10 and Z = 1. Results from an ensemble
average over 10 unsteady simulations are shown. ODT results for the rundown configuration give
Nu ∼ (Ra/Rρ)

0.35. This result is close to the relationship (3.3) obtained with the jump-periodic
configuration.

Pr . 1 (using the data in figure 2 of Wunsch & Kerstein (2005)). This scaling relationship
agrees with (3.5). Rayleigh-Bénard convection experiments for Ra ∼ 105 − 107 indicate
the same trend, but a weaker dependence, with Nu ∼ Pr1/8 for Pr . 1 (Ahlers et al.
(2009)).

Notice also in figure 15 that Nu slightly decreases with Pr for Pr ≈ 10 − 100. Not
enough data is obtained here to quantify such decrease. It is found, however, that Nu ∼
(Ra/Rρ)

0.36 for Pr = 3− 100. This is consistent with (3.3), which is based on parameter
variations for Pr = 7. A decrease of Nu with increasing Pr has also been observed in
Rayleigh-Bénard convection: ODT simulations show Nu ∼ Pr−0.1±0.02 when Pr & 10
(using the data in figure 2 of Wunsch & Kerstein (2005)), and some experiments indicate
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Figure 14. Nu correlation obtained for the rundown configuration using least-squares
minimization. Parameter values are the same as in figure 13.
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Figure 15. Effect of Pr on Nu. (a) Ra = 107, Rρ = 2 (inverse triangles), 4 (crosses), and
6 (asterisks). (b) Rρ = 6, Ra = 106 (solid squares), 107 (solid circles), 108 (solid triangles).
Other parameter values are Le = 0.01, C = 10 and Z = 1 (solid lines), C = 10 and Z = 100
(dashed-dotted line), and C = 1 and Z = 1 (dotted line). Notice that Nu increases (slightly
decreases) with Pr when Pr . 10 (Pr & 10).

a slight decrease for Pr & 1 (Ahlers et al. (2009)). There are, however, experiments
showing a very mild increase of Nu with increasing Pr (Ahlers et al. (2009)).

A power-law dependence of Re on Pr can be seen in figure 17. We obtain the following
correlation

Re ∼ Ra0.43R−0.15
ρ Pr−0.58±0.03 , when Pr = 0.01 − 100 , (3.6)

with an average (maximum) deviation of the data of 9% (30%). The fitting of the data
by (3.6) can be seen in figure 18 for C = 10 and Z = 1. The sensitivity of the exponents
of Ra and Rρ in (3.6) to C and Z is not explored here. Notice that these exponents are
consistent with those in (3.4).

The turbulent kinetic energy equation is used next to show that (3.6) is consistent
with (3.3) and (3.5). In a quasi-steady flow with no background shear and the present
boundary conditions, the turbulent kinetic energy equation becomes

〈〈ε〉z〉t ∼ g(βTFT − βSFS) ,
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Figure 16. Nu correlation obtained for C = 10 and Z = 1. Parameter values are the same as
in figure 15.
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Figure 17. Effect of Pr on Re. Parameter values and layout of the figure are the same as in
figure 15. ODT simulations show that Re ∼ Ra0.43R−0.15

ρ Pr−0.58±0.03 .

after temporally and spatially averaging (along 0 6 z 6 h) its terms. By taking 〈〈ε〉z〉t ∼
U3/L, where U and L are respectively velocity and length scales, we obtain

Re3 ∼ RaNuPr−2(1 −Rf ) , (3.7)

after using U ∼ (〈〈TKE〉z〉t)
1/2 and L ∼ h. Parallel but more rigorous derivations of

(3.7) are given in Ahlers et al. (2009) for three-dimensional Rayleigh-Bénard convection
and in Wunsch & Kerstein (2005) for the ODT analogue of this form of convection.
Notice in figure 19 that the buoyancy ratio Rf is approximately constant over the ranges
of Pr and other parameters considered. Thus, the term (1 − Rf ) is assumed constant.
By inserting (3.3) into (3.7) we obtain Re ∼ Ra0.46R−0.12

ρ Pr−0.66, while by using (3.5)
with (3.7) we get Re ∼ Ra0.44R−0.1

ρ Pr−0.59. Here the ranges of the exponents have been
dropped for clarity. These last two expressions are close to (3.6).

Mixing-length theory of thermal convection gives for Pr & 0.1 the scaling relationships
Nu ∼ Ra1/3, i.e. Nu is independent of Pr, and Re ∼ Ra4/9Pr−2/3, while for Pr . 0.1 it
suggests Nu ∼ Ra1/3Pr1/3 (Siggia (1994)). The last expression can also be obtained with
dimensional analysis by assuming that the heat flux FT is independent of h, as explained
before, and is also independent of viscosity, since ν ≪ κT . These scaling relationships
are not the same as (3.3)-(3.6), but may be close enough for rough calculations.
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Figure 18. Re correlation obtained for C = 10 and Z = 1. Parameter values are the same as
in figure 15.
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Figure 19. Effect of Pr on Rf . Parameter values and layout of the figure are the same as in
figure 15.

3.6. Effect of Le

The effect of Le on Nu predicted by ODT simulations and by the theory of Linden &
Shirtcliffe (1978) is shown in figure 20. ODT data with the following parameters are
considered here: Rρ = 1.25, 2, 4, 6; Ra = 108; Pr = 7; Le = 10−3 − 10−1; C = 10;
and Z = 1, 100. Figure 20 shows that simulations and theory predict a decrease of Nu
when Le→ 1, and that this decrease starts at lower values of Le in more stable interfaces
(larger Rρ). Similar trends can be seen in figure 21 for Re. These decreases of Nu and Re
occur because the mechanism producing thermal motions is suppressed when Le→ 1 and
this suppression becomes active at lower Le in more stable interfaces. Figure 20 indicates
that, as Le decreases, simulations and theory predict a decreasing sensitivity of Nu to
Le. Figure 21 shows a similar behavior for Re. The implication is that the diffusion of
heat is so much larger than that of salt that the latter has no effect on thermal convection
anymore. Interestingly, while the model of Linden & Shirtcliffe (1978) gives a monotonic
variation of Nu as Le decreases, ODT simulations show a non-monotonic behavior. It
is plausible that the double-diffusive interface exhibits more complicated behavior than
predicted by the model of Linden & Shirtcliffe (1978), but independent confirmation of
the behavior indicated by ODT is needed to verify its validity. The foregoing trends, as
well as the following ones on the effect of Le on Rf , were also observed with Z = 100.

Figure 22a shows the effect of Le on Rf predicted by ODT simulations at various
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Figure 20. Effect of Le on Nu for Rρ = 1.25 (circles), 2 (inverse triangles), 4 (crosses) and 6
(asterisks). (a) Simulation results for Ra = 108, Pr = 7, C = 10 and Z = 1. (b) Results from
the theory by Linden & Shirtcliffe (1978).
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Figure 21. Effect of Le on Re predicted by ODT simulations. Parameter values of the
simulations are the same as in figure 20a.

Rρ, and that measured by Turner (1965), Shirtcliffe (1973), and Takao & Narusawa
(1980) for the constant-Rf regime. The experiments of Turner (1965) are bottom-heated
experiments for the heat/salt system (Le = 0.01); Shirtcliffe (1973) uses the rundown
configuration and the salt/sugar system (Le = 0.33); and, Takao & Narusawa (1980)
uses the bottom-heated configuration with three types of aqueous solutions (Le = 0.02,
0.01, 0.003). Also shown in figure 22a is the relationship Rf = Le1/2, which is obtained
by Linden & Shirtcliffe (1978), and found to be a lower bound for Rf by Stern (1982)
(cf. § 3.2). Notice in figure 22a that ODT results for Rρ = 4 and 6 are in the constant-Rf
regime. For this regime, figure 22a shows that the simulation results agree better with
the experiments by Turner (1965) and Shirtcliffe (1973) than with those by Takao &
Narusawa (1980). This is also supported by ODT results with Z = 100 (not shown).
By fitting a power-law to the simulation results in the constant-Rf regime we obtain
Rf ∼ Le0.41±0.04, where the range in the exponent denotes its sensitivity to Z. It can
also be seen in figure 22a that, for fixed Le, ODT results for Rf in the constant-Rf
regime are larger than Rf = Le1/2. This is consistent with a variational analysis showing
that this expression represents a lower bound for Rf (Stern (1982)).

Figure 22a generalizes, to a range of Le values, the results of figure 5 indicating that
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Figure 22. Effect of Le on the Rf . Parameter values are the same as in figure 20a. (a) Simulation
results. (b) Results from the theory by Linden (1974). Also shown in (a) are results for the
constant-Rf regime from the experiments by Turner (1965) and Shirtcliffe (1973) (diamonds),

and those by Takao & Narusawa (1980) (stars), as well as the relationship Rf = Le1/2 (unmarked
solid line), explained in the text. For the constant-Rf regime, ODT simulations agree better with
the experiments by Turner (1965) and Shirtcliffe (1973) than with those by Takao & Narusawa
(1980).

ODT predictions of Rf for Rρ = 1.25 and 2 are larger than those in the constant-Rf
regime, for given Le. This happens because at these lower values of Rρ the interface is
heavily eroded by eddies enhancing the transport of salt, as discussed in § 3.2. Notice
in figure 22b that the theory of Linden (1974) predicts a similar behavior, including
increasing Rρ sensitivity as Le decreases.

4. Sheared interfaces

The effect of background shear on the heat and salt fluxes is discussed in this section.
The following parameters are considered: Ri ≈ 10−4−104, Rρ = 1.1−6, Ra = 107−109,
Pr = 7, Le = 0.01, C = 1, 10, and Z = 0.01, 1, 100. We will compare ODT results with
those from a Reynolds stress model (Canuto et al. (2008a)) and with stirring experi-
ments (Atkinson (1994)). This comparison is qualitative and is not used to validate our
results since molecular processes are unresolved in Reynolds stress models, while they are
fully resolved in ODT, and grid-stirred turbulence differs from shear-induced turbulence
(Turner (1979)). We start by giving a description of the flow in § 4.1, then describe briefly
the model by Canuto et al. (2008a), and finish by presenting our simulation results in
§ 4.3.

4.1. Flow description

Figure 23a shows that when the background shear is not too high (Ri is high enough) the
characteristic structure of the double-diffusive interface, cf. § 3.1, is preserved, and the
shape of the horizontal velocity profile resembles that set initially, cf. § 2.5. Also, as long
as the shear is not too high, the eddy erosion of the double-diffusive interface becomes
more aggressive as the shear level increases (Ri decreases), as can be seen in figures 24a-c
where the interface is at z/h ≈ 0.5. Notice in figure 24c that some eddies penetrate into
the interface. Consequently, a shear increase leads to a sharpening of the density gradient
at the interface, cf. figure 23a. These observations are similar to those discussed in § 3.2
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Figure 23. Effect of Ri on (a) the time averaged density ρ/∆ρ and (b) horizontal velocity
u/∆U profiles. Parameter values are Ri = 794 (dashed lines), 7.94 (dashed-dotted lines), 0.1
(solid lines), and Rρ = 6, Ra = 108, Le = 0.01, Pr = 7, C = 10, and Z = 1.

on the effect of the stability parameter Rρ. Eventually, when the background shear is
high enough (Ri is low enough), the interface is broken, cf. figure 24d, and the density
and horizontal velocity profiles become linear, cf. figure 23. Smaller eddies can be seen
at this high level of shear in figure 24d, where Re = O(103), in comparison with those at
lower levels of shear in figures 24a-c, where Re = O(102).

4.2. Reynolds stress model of Canuto et al. (2008a)

The Reynolds stress model of Canuto et al. (2008a) gives algebraic relationships between
the dimensionless heat and salt fluxes and their governing parameters. Within this frame-
work the effects of pressure and molecular processes are modeled. The dimensionless heat
and salt fluxes are represented by

Γh = Γh (Rρ, Ri) , Rf = Rf (Rρ, Ri) , (4.1)

where the heat mixing efficiency Γh is defined by

Γh = −
N2

〈ε〉V

FT
∆T/h

, (4.2)

where N2 = −g(∆ρ/ρ0)/h, and 〈〉V denotes a volumetric average. The definitions of Γh,
Rρ, Ri, and N2 are based on the vertical gradients of u, ρ/ρ0, T , and S averaged over
some appropriate vertical length scale, much larger than those associated with molecu-
lar processes. Here these gradients become ∆U/h, (∆ρ/ρ0)/h, ∆T/h, and ∆S/h when
averaged along 0 6 z 6 h.

In the model by Canuto et al. (2008a) the governing equations for ui = (u, v, w), T , and
S are the Navier-Stokes equations with the Boussinesq approximations. The flow proper-
ties are decomposed into mean and fluctuating parts, i.e. s = 〈s〉+ s′, where s = ui, T, S,
and 〈s〉 and s′ denote the mean and fluctuating components of s, respectively. This de-
composition is substituted into the governing equations. Further algebraic manipulation
gives a set of governing equations for the second-order moments 〈u′iu

′
j〉, 〈u

′
iT

′〉, 〈u′iS
′〉,

〈T ′2〉, 〈S′2〉, and 〈T ′S′〉. Of main interest are the moments 〈w′T ′〉 and 〈w′S′〉 repre-
senting the vertical heat and salt fluxes, respectively. The governing equation for any
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Figure 24. Temporal sequence of the locations z0 and sizes l (vertical bars) of eddy events
generated in an ODT simulation of double-diffusive convection with background shear. For
clarity, not every eddy event implemented in the simulations is shown. Values of Ri are (a) ∞,
(b) 794, (c) 7.94, and (d) 0.1. Other parameter values are Rρ = 6, Ra = 108, Le = 0.01, Pr = 7,
C = 10, and Z = 1.

second-order moment ψ has the form

Dψ

Dt
= S + D + P − τ−1

ψ ψ . (4.3)

Here S represents source or sink terms that can be calculated directly, i.e. without mod-
eling, D is a turbulent diffusion term containing third-order moments, P contains certain
terms arising from pressure/turbulence interactions, and −τ−1

ψ ψ represents the combined
effect of dissipation by molecular processes and the return-to-isotropy induced by pres-
sure, with τψ being a relaxation-dissipation time scale for the moment ψ. The terms D,
P , and τψ require further modeling. The modeling of P and τψ is described in Canuto
et al. (2001). By assuming D = 0, quasi-steady state conditions, and neglecting all gra-
dients except those in the vertical direction z, a set of algebraic linear equations for
the second-order moments are obtained. The model is completed with an expression for
the time scales τψ. These time scales have usually been treated as adjustable constants.
The key contribution of Canuto et al. (2008a,b) is to express the relaxation-dissipation
time scales of the heat and salt fluxes as functions of Rρ and Ri based on the follow-
ing physical arguments: These time scales are damped (reduced) in strongly stratified
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Figure 25. Effect of Ri on Rf . (a) Simulation results. (b) Results from Canuto et al. (2008a).
Parameter values are Rρ = 1.25 (circles), 2 (inverse triangles), 4 (crosses), 6 (asterisks), and
Ra = 108, Le = 0.01, Pr = 7, C = 10, and Z = 1. The sensitivity of the results to C and
Z, defined in the text, is denoted with error bars in (a) for Rρ = 2 and 6. The horizontal line
denotes the value of Rf = 0.15 found in experimental studies of unsheared double-diffusive
interfaces (Turner (1965)). A transition between two flow regimes occurs near Ri ∼ 1.

environments, which introduces the effect of Ri, and such damping is counteracted by
thermal convection in double-diffusion, introducing the effect of Rρ.

The heat mixing efficiency Γh and the flux ratio Rf are direct outputs of the model
by Canuto et al. (2008a). They are obtained by solving iteratively the algebraic equa-
tions (13a)-(13c), (14), (16c), (A1)-(A4), and (B1)-(B6) of Canuto et al. (2002), but with
equation (B1) replaced with equation (4l) of Canuto et al. (2008a). With this replace-
ment, the relaxation-dissipation time scales of the heat and salt fluxes are not adjustable
constants but functions of Rρ and Ri.

4.3. Effect of Ri

The effect of Ri on Rf is shown in figures 25 and 26. These figures show predictions by
both ODT and the model by Canuto et al. (2008a). Hereinafter this model is referred
to as C8. The symbols in all the figures in § 4.3 (figures 25-33) denote the data obtained
from ODT, C8, or experiments, and the curves in these figures are made by connecting
the symbols with line segments. The error bars in figure 25a denote the range of variation
of Rf when C and Z are varied and other parameters are held constant. The ODT curves
in figure 25a are for C = 10 and Z = 1. The variations shown by these error bars suggest
that the trends shown in figure 25 are insensitive to the model parameters. Such trends
were also observed to be insensitive to Ra (not shown).

Notice in figures 25 and 26 the large variation of Rf with Ri around Ri ∼ 1. This
variation is seen to be more abrupt in ODT results than in predictions by C8. When Ri
lies outside the transition region near Ri ∼ 1 figures 25 and 26 show that it has no effect
on Rf , according to both ODT and C8. Also, notice in figure 27 that for Ri≫ 1 results
from ODT simulations agree better with the limit Ri = ∞, shown in this figure using
experimental data of unsheared interfaces, than results from C8. The latter results are
seen to be insensitive to Ri when Ri & 4500.

In grid-stirring experiments of double-diffusive interfaces a warm layer of saline water
is set under a layer of cold fresh water in an insulated tank, i.e. a rundown configuration
is used, with a pair of oscillating grids at the center of each layer (Crapper (1976);
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Figure 26. Effect of Ri on Rf/Rρ. Parameter values and layout of the figure are the same
as in figure 25. Also shown are the experimental results from Atkinson (1994) for Rρ = 1.48,
2.26, 2.39, 3.33, and 4.97 (large diamonds), in order of increasing Rist, as well as those for
Rρ = 17.9 − 437 (small diamonds). For the experimental data, the abscissa represents Rist,
defined in the text.
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Figure 27. Effect of Rρ on Rf . (a) Simulation results. (b) Results from Canuto et al. (2008a).
Parameter values for the simulations are Ri = 0.04 − 0.1 (circles), 1.8 − 8.0 (inverse triangles),
40 − 88 (crosses), 1800 − 7000 (asterisks), and Ra = 108, Le = 0.01, Pr = 7, C = 10, and
Z = 1. Input values for the theory are Ri = 0.07 (circles), 4 (inverse triangles), 65 (crosses),
4500 (asterisks). Experimental results for unsheared interfaces compiled by Kelley (1990) are
also shown (dots).

Atkinson (1994)). The turbulence induced by stirring a grid in a fluid with no density
stratification is characterized by a velocity scale ust and a length scale lst. Using these
scales a Richardson number can be defined as Rist = g(∆ρ/ρ0)lst/u

2
st. Only the data

of Atkinson (1994) is used here since Crapper (1976) does not give enough information
to calculate Rist. In the experiments of Atkinson (1994) the Richardson number Rist is
varied by holding ust and lst approximately constant and by varying Rρ in the range
Rρ = 1.5−437. Figure 26 shows that the transition region predicted by ODT and C8 for
double-diffusion with background shear is also observed in the grid-stirring experiments
by Atkinson (1994). In figure 26 the abscissa represents Rist for the experimental data.

Figure 28 shows how the heat mixing efficiency Γh varies with Ri according to both
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Figure 28. Effect of Ri on the heat mixing efficiency Γh. Parameter values, layout of the
figure, and definition of the error bars in (a) are the same as in figure 25.

ODT simulations and C8. The error bars in figure 28a are defined as in figure 25a. The
effects of the model parameters on this variation were observed to be small. Also the
effect of Ra on such variation was seen to be small (not shown). Figure 28 shows that
ODT and C8 give a similar variation of Γh with Ri. However, as seen before for Rf , there
is some discrepancy when Ri ≫ 1, where ODT predicts smaller values of Γh, cf. figure
28.

So far, in this section, results from ODT simulations have been compared with those
from C8 and experiments. Next, ODT results are used to discuss in more depth the effect
of Ri on the fluxes of heat and salt.

For values of Ri ≪ 1 figure 26 shows that Rf = Rρ. This result suggests that the
same mechanism is transporting the heat and salt. Moreover, figure 29 indicates that
when Ri ≪ 1 the production of turbulent kinetic energy (TKE) by the mean shear,
PU = −〈u′w′〉∆U/h, is dominant in comparison with the production of TKE by the
temperature field, PT = gβTFT , and its destruction by the salinity field, DS = gβSFS .
Therefore, the mechanism transporting the heat and salt is the turbulence induced by
the background shear. The shapes of the curves in figure 29, which are for Rρ = 4, are
observed to be representative of the range Rρ = 2 − 6 (not shown). On the other hand,
figures 25 and 27 show that when Ri ≫ 1 the variation of Rf with Rρ resembles that
seen in unsheared interfaces, suggesting that the process of double-diffusive convection is
dominant. This observation is supported by figure 29, which shows that for Ri ≫ 1 the
turbulent fluctuations are mainly produced by the temperature field.

In the transition region near Ri ∼ 1, an increase of shear (decrease of Ri) enhances the
vertical transport of salt and heat, since it increases both Rf and Nu, as can be seen,
respectively, in figures 25 and 30. Figure 30 shows the effect ofRi onNu according to both
ODT and C8. The values of Nu from C8 are calculated with Nu = −Γh 〈ε〉V /(N

2κT ),
which is obtained using (1.2) and (4.2). For this calculation, we use the results in figure
28b for Γh, and values of 〈ε〉V /(N

2κT ) from ODT simulations, with 〈ε〉V = 〈〈ε〉z〉t, cf.
§ 2.6.

The enhancement of the fluxes near Ri ∼ 1 with decreasing Ri can be seen to occur in
two steps, one gradual, the other abrupt. Consider first a decrease of Ri from, say, 102

to 10. The eddy erosion on the interface becomes more aggressive, cf. figures 24a-c for
example. Figures 25a and 30a show that the salt and heat flux increase slightly. Figure
29 indicates that the production of turbulent fluctuations from background shear PU
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Figure 30. Effect of Ri on Nu. Parameter values and layout of the figure are the same as in
figure 25.

starts to become important. Figure 29 also shows that the damping of fluctuations by the
salinity fieldDS , which is constant whenRi≫ 1, starts to increase, while the contribution
by the temperature field to the turbulent kinetic energy PT remains constant. Thus, the
fluctuations induced by shear start to mix the salt, but their effect on PT is small. On the
other hand, once the value of PU is large enough in comparison with PT , as occurs near
Ri ≈ 1 in figure 29 for Rρ = 4, PT starts to be affected by the background shear, and
increases sharply with decreasing Ri. At this point the turbulent fluctuations induced by
shear are high enough to break the double-diffusive interface, cf. figure 24d for example.
A further decrease of Ri leads to a drastic increase of the fluxes of heat and salt, cf.
figures 25 and 30.

The variation of the turbulence intensity with Ri resembles that described for Nu.
This can be seen in figures 31a and 31b, where the turbulence intensity is represented
respectively by Re, as done throughout the present work, and by a buoyancy Reynolds
number Reb defined as Reb = 〈〈ε〉z〉t/(νN

2), which is commonly used by oceanographers
(e.g. Gargett (1989)). The turbulence intensity cannot be analyzed in this way with C8.

Figure 32a shows that when Ri≪ 1 the heat flux scales as Nu ∼ (∆Uh/ν), in agree-
ment with the previous finding that the transport of heat is dominated by shear-induced
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Figure 31. Effect of Ri on (a) Re and (b) buoyancy Reynolds number Reb defined as
Reb = 〈〈ε〉z〉t/(νN2). Parameter values are the same as in figure 25.

turbulence. On the other hand, notice in figure 32a the large scatter of the data when
using this scaling for Ri ≫ 1. Such scatter is reduced by assuming Nu ∼ (Ra/Rρ)

0.36,
cf. § 3.3, as can be seen in figure 32b. This agrees with the previous observation that
the transport of heat is dominated by double-diffusive convection when Ri ≫ 1. Notice
also in figure 32c that the scaling Nu/Re collapses the data for all values of Ri, though
there is some scatter when Ri≫ 1. The normalization of the heat flux shown in figure 32
highlights a transition near Ri ∼ 1 between a shear-dominated and a double-diffusion-
dominated regime.

We remark that a Richardson number defined as Rig = −g(∂(ρ/ρ0)/∂z)/(∂u/∂z)
2,

with the gradients evaluated at the interface, is within the same order of magnitude of
Ri, cf. figure 33. This is useful since Ri is easier to measure.

5. Summary and Conclusions

The present work is a parametric study of the heat and salt fluxes across double-
diffusive interfaces. It employs one-dimensional-turbulence simulations to determine the
scaling of these fluxes with the governing parameters. Both unsheared and sheared in-
terfaces are considered by using jump-periodic boundary conditions. Key distinctions of
this work are the consideration of a very broad parameter space, and the analysis of fully
resolved sheared double-diffusive interfaces.

Simulations of unsheared interfaces with Rρ = 1.05−6, Ra = 106−1010, and Le = 0.01
show that

Nu ∼

{

(Ra/Rρ)
0.37±0.03 when Pr = 3 − 100

(Ra/Rρ)
0.31Pr0.22±0.04 when Pr = 0.01 − 1 ,

Re ∼ Ra0.45±0.04R−0.12±0.05
ρ Pr−0.58±0.03 when Pr = 0.01 − 100 .

A slight decrease of Nu with Pr is seen when Pr ≈ 10−100, but it is not quantified since
it is too small to accurately fit the available data. The sensitivity of the exponents to the
model parameters C and Z is denoted above with ranges. ODT also simulations show
that Rf stays approximately constant as Pr is varied, and that Rf increases slightly
with Ra when Rρ is low, i.e. when the interface is unstable, and that this tendency is
reduced for increasing Rρ. The above scaling of Nu with Ra/Rρ is also observed for
Pr = 7 when a rundown configuration is used. Nonetheless, in general, some sensitivity
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Figure 32. Effect of Ri on the rescaled heat flux. Parameter values are Rρ = 1.1 (squares),
1.25 (circles), 1.5 (triangles), 2 (inverse triangles), 3 (left triangles), 4 (crosses), 5 (plus signs), 6
(asterisks); Le = 0.01, Pr = 7, C = 10, and Z = 1. Results for Ra = 107, 108, and 109 are shown.
The scaling Nu/(∆Uh/ν) in (a) highlights a shear-turbulence-dominated regime for Ri ≪ 1 and
the scaling Nu/(Ra/Rρ)0.36 in (b) highlights a double-diffusive-convection-dominated regime for
Ri ≫ 1. Notice in (c) that the scaling Nu/Re collapses the data for all values of Ri, though
there is some scatter when Ri ≫ 1.

10
0

0

0.5

1

1.5

2

2.5

3

3.5

4

Ri, Rig

R
f

(a)

10
0

10
1

10
2

10
3

10
4

Ri, Rig

N
u

(b)

Figure 33. Effect of Ri (open symbols) and Rig (solid symbols) on (a) Rf and (b) Nu for
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of the exponents of the identified correlations to the boundary conditions is expected.
This sensitivity could be explored in future studies.

Interestingly, Ra/Rρ appears as a dominant parameter for Nu in the above correla-
tions, as a result of least-squares minimization. Ra/Rρ can be seen as a ratio of desta-
bilizing and stabilizing effects. To our knowledge, the above scalings between Nu and
Ra are, together with those by Marmorino & Caldwell (1976), Nu ∼ Ra0.37±0.1 for
Ra ∼ 1010 − 1011 and Pr ≈ 7 (cf. Kelley et al. (2003)), the only ones obtained for
double-diffusive convection in the diffusive regime by means other than dimensional rea-
soning.

Regarding the effect of Le in unsheared interfaces, ODT simulations for Pr = 7 and
Le = 10−3 − 10−1 show that Nu→ 0 when Le→ 1, as the double-diffusive convection is
suppressed, and that Nu approaches an approximately constant value when Le decreases
in the range 10−3 − 10−1, since the diffusion of salt becomes small enough for it not
to have an effect on thermal convection. Similar trends are indicated by the model of
Linden & Shirtcliffe (1978). However, while this model shows that Nu monotonically
approaches an approximately constant value, the simulations show a more complex non-
monotonic behavior. In stable interfaces (Rρ = 4 and 6), Rf is observed to scale as
Rf ∼ Le0.41±0.04. This result is important because of a previous discrepancy among
experiments. The scaling exhibit by ODT agrees better with the experiments by Turner
(1965) and Shirtcliffe (1973) than with those by Takao & Narusawa (1980). In unstable
interfaces (Rρ = 1.25 and 2), Rf deviates from this scaling relationship, as the erosion of
the interface becomes important. Such behavior is also indicated by the model of Linden
(1974).

Three flow regimes are observed in ODT simulations of sheared interfaces with Pr = 7
and Le = 0.01. When Ri ≪ 1 shear-induced mixing dominates, the interface is broken,
and the fluxes are given by Nu ∼ ∆Uh/ν and Rf = Rρ. Near Ri ∼ 1 a transition
region occurs. In this region the heat and salt fluxes increase as the shear increases (Ri
decreases). This agrees with observations in the ocean of double-diffusive interfaces (Pad-
man (1994)), but contrasts with observations in salt-fingering interfaces, where the fluxes
appear to be damped by background turbulence (Linden (1971); St. Laurent & Schmitt
(1999)). Finally, when Ri ≫ 1 double-diffusive convection dominates, the characteris-
tic structure of the double-diffusive interface is preserved, and the scaling of the fluxes
resembles that in unsheared interfaces.

The transition region merits further study with experiments or DNS, in order to obtain
an accurate estimate of the transition value of Ri, and to explore the possible effect
of interfacial waves on the fluxes, which cannot be captured with ODT. Although it
has been argued that these waves would increase the fluxes by sharpening interfacial
gradients (Linden & Shirtcliffe (1978) p. 428) and/or by breaking (Turner (1979) p. 275)
visualizations of unsheared interfaces do not show the presence of such waves (Fernando
(1989)).

Overall, the agreement between ODT results for sheared interfaces and predictions by
Canuto et al. (2008a) is satisfactory, though the latter predicts a less abrupt transition
near Ri ∼ 1, and higher values of Rf and ΓH when Ri & 1. These comparisons are
important since models like that of Canuto et al. (2008a) are ultimately used in ocean
circulation models. ODT can complement such models by providing information that is
not otherwise available, including measures of turbulence intensity such as Re(Ri,Rρ),
a relationship between bulk (Ri) and gradient (Rig) Richardson numbers, and transient
effects. The accuracy of this information would be subject to ongoing evaluation as
reliable comparison data becomes available.

A follow up of the present study of a single double-diffusive interface could be that
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of a double-diffusive staircase. Although the former case is more fundamental, the latter
is of more practical relevance. An unsheared double-diffusive staircase has already been
simulated using a minimal ODT formulation that is not applicable to sheared interfaces
(Kerstein (1999b)). Future work could use the present formulation to simulate a sheared
staircase, and study the evolution of the interfaces, as well as the parametrization of the
fluxes. Moreover, future studies should consider the effect of having a nonlinear equation
of state for the fluid, and determine if the phenomenon of interface migration is due to
the nonlinearity of the equation of state for seawater (McDougall (1981); Kelley et al.
(2003)). In addition, future work could consider the regime Pr < 0.01, of importance in
astrophysics (Chabrier & Baraffe (2007)), and transient effects in the regime Rρ > 10, of
interest for the design of solar ponds (e.g. Newell (1984); Suárez et al. (2010)).

This work was supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National
Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under contract DE-AC04-
94-AL85000. Simulations were performed at Sandia National Laboratories on the Shasta
Linux Cluster.
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