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Abstract

This study presents the results of computational fluid dynamics (CFD) simulations of a multiphase,
reacting, turbulent mixing layer in an idealized geometry. The purpose is to compare Large-Eddy
Simulation (LES) to One-Dimensional Turbulence (ODT) and examine the trends of the flow un-
der differing mixing conditions. Aqueous streams are mixed together to precipitate polymorphs
of calcium carbonate. The polymorphs of calcium carbonate are tracked numerically using pop-
ulation balance equations (PBE). Each PBE contains all of the relevant physical models to track
the particle evolution including nucleation, growth and aggregation. A simple subgrid mixing
model that is convenient for use with PBEs was implemented in the LES code. The higher spa-
tial resolution achievable with ODT allowed an investigation on the effect of resolution on the
mixing-model error. The Reynolds number of the flow is varied and is shown to cause a decrease
in average particle sizes with higher mixing rates.
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Introduction

There are many computational fluid dynamics (CFD) methods in the literature. Direct Numer-
ical Simulation (DNS) is widely regarded as the most accurate method, but it quickly runs into
limitations of computational time and domain size. Reynolds-Averaged Navier-Stokes (RANS)
lies at the other end of the computational cost. Although it may be computationally inexpen-
sive to run simulations with RANS, many types of flows can exhibit low accuracy. There are
several methods in the intermediate range which attempt to balance accuracy with computational
cost for specific flows. Two of these intermediate methods will be studied here: large-eddy sim-
ulation (LES) and one-dimensional turbulence (ODT). LES maintains a detailed description of
three-dimensional flow domains by resolving only the largest eddies in the system while modeling
the subgrid scales.1 ODT maintains a full spatial resolution of the flow in one spatial dimension
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and models, with stochastic methods, the effects of turbulent advection.2 As ODT resolves only
one dimension spatially, it can be less computationally costly than LES when using the same res-
olution. Due to this, the ODT simulations in this study are run at a higher spatial resolution than
that of the LES ones. The downside here is that the ODT formulation requires the use of a simple
geometric configurations

A temporal jet flow is used to examine the influence of the Reynolds number and mixing on
reactions in the shear layers between the two streams. This simple flow setup allows for good
results from the ODT code. The use of an idealized mixing layer to examine reactions in CFD
has been studied in DNS by Riley et. al.3, 4 and more recently by Pantano et. al.5 A similar
study using LES examined the use of different subgrid models in a turbulent mixing layer from an
idealized temporal jet.6 The use of a temporal jet to study an elementary reaction in a LES mixing
layer was reported by Colucci et. al.7 A turbulent mixing layer has also been used in more recent
simulations for DNS simulations of soot formation8 and flame extinction.9 In addition, studies
have been conducted with this geometry to compare ODT results to DNS results for extinction10

and for soot formation.11

Sodium-carbonate and calcium-chloride salts are both soluble in water, and when mixed to-
gether, make a supersaturated solution for the precipitation of calcium carbonate. For the con-
ditions used in this study, calcium carbonate precipitates as one (or more) of four distinct solid
phases. These solid phases are loosely referred to as polymorphs, the polymorphs are amorphous
calcium carbonate (ACC), vaterite, aragonite and calcite. ACC is the most unstable phase and has
a solubility orders of magnitude lower than the other forms. It is theorized that this phase rapidly
precipitates and redissolves back into solution once its supersaturation ratio drops.12 Of the three
remaining polymorphs, vaterite and aragonite are metastable, while calcite is the most stable form.
The temperature of the system affects the solubilities of all four polymorphs, and it provides the
strongest effect on the long time preference in the competition between the metastable phases of
vaterite and aragonite or the stable phase of calcite.13 The simulations in this study are run at room
temperature; at this condition ACC and calcite should be the most abundant phases.

In order to track the properties of the precipitating solid phases, a population balance approach
is utilized. This approach consists of tracking the distribution of solid particles via a population
balance equation (PBE). The PBE formalism allows one to accurately account for the various
solid phase interactions with appropriate physical models. One PBE is used for each of the four
polymorphs of calcium carbonate. A moment method is used to circumvent the many challenges
associated with the direct solution of PBEs. The moment method provides a suitable way to track
the statistics of the PBE, but requires some closure for the source terms.14, 15 By using a PBE
approach, Schroeder et. al.16 have shown that the physical models can reproduce experimental
results by Ogino et. al.12 for a simple spatially homogeneous problem of calcium carbonate
precipitation

The idealized flow regime with a mixing layer allows for the comparison between LES and
ODT simulations. The ODT was run at a much higher resolution, and will be used as a baseline
for the comparison. As the temporal jet used here is a simple geometry, the ODT should be able
to give good flow results at a high resolution. The paper is organized as follows, first, the theory
used for the population balances and the associated particle source terms will be discussed. Then
the setup for both of the numerical sets of simulations for LES and ODT will be outlined. This
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is followed by a detailed comparison of the the LES and ODT results. Finally, due to the high
resolution of the ODT simulations it will be used to perform an analysis of the subgrid mixing
model than is used in the LES code.

Theory and Setup

The flow setup used in this study is a turbulent mixing layer with periodic boundary conditions
in all directions. The physical domain size is 0.04 m by 0.02 m by 0.02 m with a central jet width
of 0.01 m. This central jet is initialize to a mixture fraction of 1, with a velocity of U0, with the
rest of the domain initialized to a mixture fraction of 0, with a velocity of −U0. The initial case is
run with U0 = 0.75 m/s and T = 25◦C, with a Reynolds number of 16 000. The Reynolds number
is increased in the additional simulations to 64 000 and 128 000, corresponding to U0 = 3.0 m/s
and U0 = 6.0 m/s, respectively. This simple geometry is used, as the ODT code has difficulty
in simulating flows which are not canonical. This geometry would be representative of the early
mixing regions of a full scale reactor.

In this system an initial concentration of 0.03 M in each of the pure streams of the jets is used,
these streams are aqueous sodium carbonate and calcium chloride. At this low concentration, using
Davies’ correlations for activity coefficients has been shown to perform well.17 Aqueous phase
equilibrium equations are solved for 10 of the major species in solution. The supersaturation ratio
for each polymorph is calculated based on the aqueous chemical activities and known solubilities
for each polymorph, α, as S α = [CaCO3]/[CaCO3]eq,α.13 The simulation time steps are much
higher than the aqueous reaction speed, so utilizing an equilibrium approach should be a good
assumption. In the LES code, the aqueous chemistry is tabulated over mixture fraction and extent
of reaction prior to running the CFD simulations to avoid the computational cost of solving the
non-linear system of equations. The supersaturation data is well behaved, and 21 discrete points
are tabulated for mixture fraction space, and 15 discrete points tabulated for extent of reaction
space. The ODT is less computationally expensive and does not use a tabular approach, instead the
ODT code calculates the equilibrium concentrations at each point in the domain as the simulation
progresses.

Precipitation Model
The numerical model for the particles consists of transporting the particle size distribution

(PSD), as demonstrated by Randolph.18 The PSD is adapted here to contain all of the complex
source terms

Dη(r)
Dt

+
∂G(r)η(r)

∂r
= B(r) + A(r) + ξmix + D(r). (1)

PSDs are commonly used in the crystallization community and have been shown to accurately
represent populations of particles.19, 20, 21 The model used in this study consists of a full devel-
opment of physical terms for the birth (B), death (D), growth (G) and aggregation (A) kernels,
along with a term for subgrid mixing in the LES (ξmix). Eq. (1) is transformed into an equation
for the moments of the distribution by multiplying by rk, where k is the order of the moment, and
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integrating. The kth moment is defined by mk =
´ ∞

0 rkη(r)dr. The moment transport equation can
then be expressed as

Dmk

Dt
+ k
ˆ ∞

0
rk−1G(r)η(r)dr =

ˆ ∞
0

rk
(
B(r) + A(r) + ξmix + D(r)

)
dr. (2)

Using a moment method requires closure of integral terms. In the LES code QMOM is used.14

The closure model defines weights and abscissas such that

mk =

N∑
i=1

wiRk
i . (3)

The weights, wi, and abscissas, Ri, are solved using the product-difference algorithm.22 For each
of the polymorphs, six moments are transported which results in three abscissas and weights. In
order help maintain numerical stability, the domain is initialized with a small uniform distribution
of 1 billion particles per cubic meter with an average size of 500 nm.

In Schroeder et. al.,16 a comprehensive modeling scheme for this precipitate system was de-
veloped. It was shown that this scheme could describe the experimental results from Ogino et.
al.12 A brief summary of the models used in the simulations is listed, but for a more in depth guide
refer to Schroeder et. al.16

The PBE uses a corrected homogeneous birth model23, 24, 25 to nucleate particles at a given criti-
cal radius.26 The growth term used is a simple bulk diffusion growth at high supersaturation,26, 27, 28

and kinetically-limited growth at low supersaturation29, 30, 31 with a correction for Ostwald ripen-
ing included in both terms.26, 32 A term for the aggregation of the particles is also included,33 with
a correction for collision efficiency.34 Lastly, an internally developed empirical model for death
of small particles is included.16 Table 1 shows a list of the actual formulas used for this set of
precipitation models.

For the birth rate, z is the Zeldovich factor, k f is the the reaction rate coefficient, N1 is the
molecules in solution, ∆G is the Gibbs free energy, Kb is the Boltzmann constant and T is the
temperature. For critical radius, σT is the Tolman surface energy, ν is the molecular volume, R
is the gas constant, and S is the supersaturation ratio. For the growth rates, D is the diffusion
coefficient, Ceq is the equilibrium concentration, and ks is an empirical rate constant. The aggrega-
tion frequency is a combination of turbulent aggregation and Brownian kernels, with ν as the fluid
viscosity and ε as the dissipation. For the aggregation efficiency kernel, L is a empirical length
parameter and d is the average particle diameter of the colliding particles. For the death rate, kD is
a correlated rate coefficient.

It should be noted that the model used here makes a few simplifications to avoid the effects of
ion ratio,35, 36, 37, 38 pH levels,39, 40 the direct transformation of polymorphs,41, 42 and non-classical
nucleation.43, 44 As the particle volume fraction values are estimated to be low, viscosity effects of
the particle-laden solution were neglected.45, 46 Due to the modularity of the model described here,
more advanced physics can be substituted if desired.
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Numerical Simulation - LES
The LES simulations were run using a C++ computational framework called Uintah, which

was developed for large-scale parallelization of physics components.47, 48, 49 The Uintah code is
maintained in a repository which allows for free distribution.50 There are multiple components
to the Uintah framework, two of which are utilized here. The Uintah framework handles the
parallelization of the code, while the components deal with the solution to the velocity and scalar
fields. For these simulations, the ARCHES component of the framework solves the conservative,
finite-volume, low-Mach formulation of the Navier-Stokes equations with a pressure projection
that includes the effects of variable density, reaction and heat transfer models in the gas phase.51, 52

Here, ARCHES is applied to the the LES of liquid mixing and transport. The Wasatch component
of the Uintah framework was utilized in a hybrid code-base for the PBEs of the simulation.53 For
the spatial filtering in LES, a simple box filter is used.

The LES simulations contain 8.2 million cells as 320x160x160 equally spaced grid points and
are run in parallel on 1024 processors. The domain is periodic in all three dimensions. Spatial
discretization is carried out using a second-order scheme while temporal discretization uses a
second-order, strong stability preserving time integrator. The initial condition for LES is shown
in Fig. 1, along with the mixture fraction profile at different snapshots in time. The central jet is
set at a velocity of U0 with a mixture fraction of 1.0 – pure aqueous calcium chloride, the outer
jet is set at a velocity of −U0 and a mixture fraction of 0.0 – pure aqueous sodium carbonate. For
subgrid modeling of the stresses, the dynamic Smagorinsky model was used.54 Each case was run
for 48 hours of computational time to ensure a well-mixed state was reached. This resulted in
a simulation time of just over 0.4 seconds. With the jet time scale defined as τ j = H0/∆U, the
number of jet times is equivalent to 60 for the lowest Reynolds number and increases to 240 and
480 for the other two cases.

Subgrid Mixing Model
On the subgrid scale, the mixing is represented by three distinct environments: pure stream

1 of aqueous calcium chloride, pure stream 2 of aqueous sodium carbonate, and a mixed portion
where the precipitation of calcium carbonate occurs. No reactions or precipitation occur in the
pure stream environments. This approach is used over a DQMOM-IEM approach55 due to the
inexpensive computational cost. The mixture fraction and the scalar variance are calculated at
each grid point. Using the constraint of 3 delta functions, analytical solutions are found for the
weights of each of the 3 environments in the subgrid scale as

ω1 =
Z̃′2

Z̃
(13)

ω2 =
Z̃′2 − Z̃ + Z̃2

Z̃2 − Z̃
(14)

ω3 =
−Z̃′2

Z̃ − 1
. (15)

Here ωi is the weight of each environment, Z̃ is the average mixture fraction and Z̃′2 is the
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Table 1: Models used in the PBE

Type Formula
Birth J = zk f N2

1 exp(∆G/KbT ) (4)
Critical radius rc = 2σT ν

RT ln(S ) (5)
Growth G(r) = νDCeq(S − S̄ )/r (6)

Growth at low S G(r) = −ks(S − S̄ )2 (7)
Ostwald ripening S̄ = exp(2σTν/RTr) (8)

Aggregation Ai = 1/2
∑

i wi
∑

j w j(r3
i + r3

j )
α/3βi jψi j −

∑
i rαi wi

∑
j βi jψi jw j (9)

Aggregation frequency βi j = 2KbT
3ρ

(ri+r j)2

rir j
+ 4

3

(
3πε

10νfluid

)1/2
(ri + r j)3 (10)

Aggregation efficiency ψi j = m1
1+m1

, m1 =

G(ri) ≥ G(r j)
LG(ri)
ρεd2

else LG(r j)
ρεd2

(11)

Death Di = −30kDwi/∆t (12)
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Figure 1: Domain initialization and progression while mixing in the LES. The colorbar

corresponds to mixture-fraction values. In the center jet, mixture fraction is initialized to 1.0 and

velocity to U0; in the outer jet, mixture fraction is initialized to 0.0 and velocity to −U0.
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average mixture fraction variance in the cell. The PBE is only solved in the middle environment,
ω2. The moments in environments 1 and 3 are initialized to the same non-zero value as the rest of
the domain and are held constant throughout the simulation. The source term that appears in the
PBE due to mixing environments 1 and 3 into the center is

Ξmix ≡

ˆ ∞
0
ξmixrkdr, (16)

Ξφk,2,mix = −
dω1/dt
ω2

(φk,1 − φk,2) −
dω3/dt
ω2

(φk,3 − φk,2). (17)

Here φk,i represents the kth moment for the ith environment, so φk,2 is the main solution variable,
while φk,1 and φk,3 are constant at the initialized value. The time derivative terms in Eq. (17) are
given by

dω1

dt
=
−χZ

Z̃
, (18)

dω3

dt
=
−χZ

1 − Z̃
. (19)

Here χZ is the scalar dissipation rate. Fig. 2 shows the graphical subgrid illustration and the
corresponding probability density functions as discrete delta functions for an average mixture
fraction of 0.5 with the scalar variance normalized by the maximum.

The derivative terms calculated in Eq. (18) and Eq. (19) both require calculation of the scalar
variance. This value is not transported on the grid directly, but calculated based on the transport
of the mixture fraction and the second moment of the mixture fraction:

Z̃′2 = Z̃2 − Z̃2. (20)

The second moment of the mixture fraction then requires a transport equation

D
Dt

(
ρ̄Z̃2

)
=

∂

∂x j

ρ̄(DZ + Dt)
∂Z̃2

∂x j

 − ρ̄χZ. (21)

Here DZ and Dt are the molecular and turbulent diffusion coefficients, respectively. This equation
requires the closure of the scalar dissipation rate χZ for the source term. This is implemented as
an approximation based on the mixture fraction gradient56

χZ ≈ 2(DZ + Dt)
∂Z̃
∂xi

∂Z̃
∂xi

. (22)

Numerical Simulation - ODT
The ODT model used in this study has been described in detail by Lignell et. al.57 In this

section, a summary of the model formulation is given. ODT solves unsteady equations for mass,
momentum and other scalars in a single spatial dimension. Because turbulence cannot naturally
evolve in one-dimension, turbulent advection is modeled stochastically. There are two concurrent
processes in ODT: (1) evolution of the unsteady, one-dimensional transport equations (termed the
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Figure 2: Graphical representations and PDFs of subgrid environment. The top plots are

representative of one finite volume cell, with black and white as pure streams, and grey as the

mixed portion of the cell. The bottom plots are the PDFs corresponding to each of these states.
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diffusion process), and (2) the modeled advection processes. Turbulent advection is modeled by
so-called eddy events in which portions of the domain are remapped using triplet maps.58 A single
eddy is parameterized by a size l, a position y0, and a timescale τe. A triplet map associated with
an eddy event consists of taking each scalar profile in the map region y0 ≤ y ≤ y0 + l and replacing
it with three copies of the profile, each spatially compressed by a factor of three, with the center
copy spatially inverted. In this process, all scalar quantities are conserved and remain continuous.
An eddy event is also consistent with turbulent motions in that it increases scalar gradients and
decreases local length scales.

In the vector formulation of ODT59 used here, kernel operations (in addition to triplet maps)
are applied to velocity components to model return-to-isotropy effects.60, 57

Eddy occurrences depend on the evolving momentum field and are related to the local turbulent
kinetic energy. A given eddy of size l and location y0, has an eddy timescale τe that is defined with
the scaling relation Ekin ≈

1
2ρlu ≈ 1

2ρl3/τ2
e for an assumed unit area domain perpendicular to the

line direction y. Here, Ekin is a measure of the local kinetic energy,60 and is augmented by a term
Evp = 1

2ρν
2/l, which is a viscous penalty term meant to suppress small eddies. Solving for τe

yields

1
τe

= C

√
2
ρl3 (Ekin − ZEvp). (23)

Here C and Z are model parameters termed the eddy rate parameter and the viscous penalty param-
eter, respectively. To limit the occurrence of unphysically large eddies, a large-eddy suppression
mechanism is implemented such that t > βτe, where β is an adjustable parameter.

Eddies are stochastically sampled and accepted on the domain during the flow evolution as
follows. An eddy rate per square length is defined as λ(l, y0) = 1/(τel2). Then the total rate of all
eddies is Λ =

s
λdldy0 and we define the joint probability density function P(l, y0) = λ(l, y0)/Λ. In

principle, eddies may be sampled from P(l, y0), and implemented as a Poisson process in time with
rate Λ. However, P(l, y0) is prohibitively expensive to compute, and instead, the rejection method61

combined with a thinning process62 is used. Eddy occurrence times are sampled from a Poisson
process with rate 1/∆ts, with the eddy size and location sampled from an analytic approximation
P̃(l, y0) of P(l, y0). Candidate eddies are then accepted with probability

Pa =
∆ts

τel2P̃(l, y0)
, (24)

where ∆ts is specified adaptively to maintain an average acceptance probability of less than 0.02.
Candidate eddies are sampled on the domain and the diffusion process is implemented between
accepted eddies.

In the diffusive advancement portion of the solution, transport equations are solved for three ve-
locity components, mass fractions of all elemental species in the aqueous phase, and Nenv weights
and Nenv abscissas for each of the four calcium carbonate polymorphs. Here, Nenv = 4 quadrature
nodes are used for each PBE. The ODT code uses an automatically adaptive mesh (AMR) in a
Lagrangian finite volume formulation. The grid resolution varied between 20 000 and 50 000 for
the simulations here. The transport equation for a generic scalar ϕ written for a grid cell is given
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by
dϕ
dt

= −
1
ρ∆y

( jϕ,e − jϕ,e) +
S ρϕ

ρ
, (25)

where jϕ is the diffusive flux, S ρϕ is a source term, and subscripts e and w refer to the east and
west cell faces. Here, ϕ is taken as ui, Yi, wi,α/ρ, and Ri,α/ρ, that is, momentum, species mass,
environment weight, and environment abscissa, each per unit mass, respectively, where α refers to
a specific polymorph. In the present application, the density is assumed constant, and there is no
change in the grid during the diffusive advancement.

The diffusive flux of crystal particles is assumed zero. The momentum flux terms are modeled
as jui = −µdui/dy. Central difference approximations are used to compute gradients at cell faces.
Fluxes of aqueous elements are computed as jYi =

∑
k Yi,k jk, where Yi,k is the mass fraction of

element i in species k, and jk is the mass flux of species k. Aqueous species diffusion fluxes are
computed using the following relation based on the Nernst-Planck equation:63

jYi = −Mi Di∇ci +
ciziMi Di

∑nsp−1
j=1 z j D j∇c j∑nsp−1

j=1 c jz2
j  D j

, (26)

where Mi is the species molecular weight, ci is the molar concentration, zi is the species charge
number, and  Di is the species diffusivity. Water is taken as species nsp. The species diffusivities
were computed using the OLI Systems software,64 with temperature dependence computed using
the Stokes-Einstein relation.63

The source terms S ρϕ in Eq. (25) are zero for the momentum components. For elemental mass
fractions, the source terms account for mass transfer between the aqueous phase and the solid
carbonate polymorphs. For element i consisting of carbon, oxygen and calcium,

S ρYi = −Yi,CaCO3
4
3
π
∑
α

ρα
dm3,α

dt
, (27)

where Yi,CaCO3 is the mass fraction of element i in calcium carbonate, and ρα is the density of the
polymorph α. The moment equation, dmk,α/dt (with k = 3 here) is the same as given above in Eq.
(2) but without the mixing or convective terms.

The ODT uses a variation of QMOM that is termed direct quadrature method of moments
(DQMOM),15 in which rates for the environment weights and abscissas are written in terms of the
moment sources dmk,α/dt (again Eq. (2) without the mixing term). For a given polymorph α, the
source terms S wi,α and S Ri,α are computed by inverting the linear system

Nenv∑
i=1

[
wi,αkRk−1

i,α S Ri,α + Rk
i,αS wi,α

]
=

dmk,α

dt
, for k = 0 . . . 2Nenv − 1. (28)

The ODT model is solved using an explicit Euler time integration. Mesh adaption is per-
formed as given in Lignell et. al.57 When merging grid cells, the moments corresponding to
environment weights and abscissas are computed and adaption is performed conservatively on
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these moments. The environment weights and abscissas are then reconstructed from the moments
using the product-difference algorithm.22

Results and Discussion

Centerline Data
At a similar resolution, ODT simulations take significantly less computational cost to run than

the LES simulations. Due to this, the ODT simulations could be run with an increased spatial and
temporal resolutions. The ODT grid resolution was increased to make the two sets of simulations
have close to the same total computational cost. Specifically, the ODT was run at an order of
magnitude higher than the LES in spatial resolution, and two orders of magnitude improvement
in the temporal resolution. The idealized geometry used in this study is well suited to ODT’s
strengths. In this sense, the ODT results can considered as a baseline for analyzing the LES
results.

The first thing to examine is how quickly the two streams of calcium chloride and sodium
carbonate are mixed together. The centerline of the temporal jet shows a decay in the velocity over
time as kinetic energy is dissipated, these results are shown in Fig. 3 for both the LES and ODT
results for the range of Reynolds numbers used. The LES results are spatially averaged on the
centerline, while the ODT results are taken as an ensemble average over 100 ODT realizations. It
should be noted that all of the results in this section are plotted with respect to a semi-log axis in
time, so the mixing timescales between Reynolds numbers vary by an order of magnitude.

The LES simulations were initialized with no fluctuations, so the shear layer takes a long time
period to develop the instabilities which create the eddies to mix the fluid. On the other hand,
ODT undergoes stochastic processes from the start of the simulation causing the initial decay to
occur much more quickly. Essentially, the ODT formulation allows for the shear layer to develop
instabilities instantaneously. Due to this, the ODT results in Fig. 3 were time shifted to match
the LES produced velocity decay profiles as close as possible so that a direct comparison of the
data can be made. This shift required larger time intervals at the lower Reynolds numbers. All
subsequent data is shifted by the same timescale as this plot, the exact values of the time shifts are
shown in Table 2. The velocities in Fig. 3 show that the ODT velocity results decay more slowly
than the results from the LES, which drop to nearly zero once the decay begins.

The centerline fluctuations of the velocity are shown in Fig. 4. The LES results for the velocity
fluctuations show a higher magnitude than the ODT results, however they exhibit similar trends.
First, a large spike in the velocity fluctuations occurs as the first eddys are transported to the
centerline. This is followed by a slow decay of these fluctuations as the kinetic energy of the
system is dissipated. The larger fluctuations that occur in the LES results lead to a quick decay
rate of the kinetic energy. This is the cause for the steep drop off in velocity when compared to
the ODT results in Fig. 3. The ODT parameters C and Z in Eq. (23) were tuned to match the
mean velocities as a priority over matching the fluctuation profiles. The tuned parameters were
set at C = 12.0 and Z = 0.5. While the same trends are seen, the large magnitude difference in
fluctuations was not an expected results. It is possible that the eddy suppression parameter, Z, in
ODT was tuned too small and the lack of larger eddys forming limits the fluctuations of the ODT.
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Figure 3: Spatial- (LES) and ensemble- (ODT) averaged velocity decay on centerline, with time

on a semi-log scale. Lines correspond to LES results and lines with symbols correspond to ODT

results.
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Table 2: Time shift for ODT to match LES timescales.

Initial velocity (m/s) Time shift (s)
0.75 0.091
3.0 0.0235
6.0 0.0105
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Figure 4: Spatial- (LES) and ensemble- (ODT) averaged velocity fluctuations on centerline, with

time on a semi-log scale. Lines correspond to LES results and lines with symbols correspond to

ODT results.
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Another possibility is that the LES is not resolving enough of the large scale flow, and the subgrid
models cause the fluctuation values to be much higher than those predicted in the ODT.

The mixture fraction at the centerline is shown in Fig. 5. All the plots start at the separated
state of mixture fraction 1.0 (which is pure calcium chloride), and as the streams become mixed
the mixture fraction approaches 0.5. This plot shows similar trends to those seen in the velocity
decay plot. The LES results show a steep drop-off in the mixture fraction values as soon as the
mixing begins to occur, while the ODT results have a slower approach to the final well-mixed
state. This is especially noticeable for the lowest Reynolds number, where the LES simulation has
reached the well-mixed state, but in the time period shown the ODT simulation has not yet reached
this state.

The variance of the mixture fraction at the centerline is shown in Fig. 6. The magnitude of the
variance shows the opposite trend compared to the velocity fluctuations, increasing the Reynolds
number decreases mixture fraction variance. This is intuitive, as one would expect faster scalar
mixing at higher Reynolds numbers. The lowest Reynolds number case has the longest time
period at which the variance remains high, this corresponds to a lower portion of the centerline at
the well-mixed state during the nucleation process. This results in a lower portion of the domain
reaching the highest value for the supersaturation. The spike in the fluctuations is the largest in the
low Reynolds number case in the LES, so the domain in this simulation is the furthest from being
entirely mixed in the early nucleation period.

As with the fluctuations in the velocity, the mixture fraction fluctuations on the centerline
are higher in the LES results than in the ODT results. The faster rate of mixing in the higher
Reynolds number cases results in the system reaching the highest value of supersaturation prior
to the occurrence of significant nucleation. Higher supersaturation ratios result in smaller critical
radii at which particles nucleate, via Eq. (5), as well as higher rates of nucleation, via Eq. (4).

The zeroth moment, which corresponds to the number density, for each of the four polymorphs
is shown in Fig. 7 for the centerline of the domain. In both sets of simulations, increasing the
velocity leads to an increase in the number density of each of the polymorphs. This is the expected
result, as the faster mixed systems should contain the highest supersaturation ratios, and thus the
fastest nucleation rates. For ACC, the LES results at the highest Reynolds number are close, but
slightly lower than the ODT results. The number density is nearly identical at the middle Reynolds
number, and at the lowest Reynolds number the LES results show a higher number density than
the ODT results. When looking at the plot for calcite, the LES only matches the number density
of the ODT at the lowest Reynolds number, and is lower than the number density of the ODT for
the two other cases. For vaterite, the LES number density is greater than that of the ODT for all
three cases. The plot for aragonite shows close agreement at the highest Reynolds number, while
LES values are less than the ODT in the lower velocity cases.

The first moment for each of the polymorphs is shown in Fig. 8. For ACC, the same trends
that were seen in the number density plot appear here with agreement between the ODT and LES
methods at the middle Reynolds number. The LES results show lower values at the highest velocity
and higher values at the lowest velocity. After the initial nucleation event, the data for the ACC
plot levels off quickly as growth stops, the other three polymorphs all continue to grow and an
increase in the first moments is seen.
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Figure 5: Spatial- (LES) and ensemble- (ODT) averaged mixture fraction on centerline, with time

on a semi-log scale. Lines correspond to LES results and lines with symbols correspond to ODT

results.
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Figure 6: Spatial- (LES) and ensemble- (ODT) averaged mixture fraction variance on centerline,

with time on a semi-log scale. Lines correspond to LES results and lines with symbols

correspond to ODT results.
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Figure 7: Spatial- (LES) and ensemble- (ODT) averaged zeroth moment (number density) on

centerline, with time on a semi-log scale. Lines correspond to LES results and lines with symbols

correspond to ODT results.
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Figure 8: Spatial- (LES) and ensemble- (ODT) averaged first moment on centerline, with time on

a semi-log scale. Lines correspond to LES results and lines with symbols correspond to ODT

results.
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Using these two lower order moments, the average radius of the the polymorphs can be calcu-
lated by dividing the first moment by the zeroth moment. The average radius of the particles on the
centerline is shown in Fig. 9. In order to keep the system numerically stable, a wide distribution
with a low number density was seeded into the simulation. This distribution was several orders
of magnitude lower than the number densities which occur from nucleation, so it has no effect on
the results. However, this initial distribution results in some noise in the early time frames of the
average radius plots. Once the noise is dampened, the low point in each of the curves essentially
shows the radius at which particles are nucleated. After the nucleation event occurs, the increasing
slope of the plots shows the growth of the particles.

For the most part, both sets of simulations show that increasing the Reynolds number of the
system will lead to a decrease in the size of the nucleating particles. The ACC results show this
trend well when looking at the ODT data. The differences in the particle size of the LES data is
minor for ACC for the two highest Reynolds numbers. However, at the lowest Reynolds number
the LES results show a lower particle size. For both sets of simulations the slope of the average
radius for ACC quickly levels off. This is because the supersaturation quickly reaches near 1.0, so
the growth of ACC stops. At longer timescales after mixing is complete, the ACC would begin to
dissolve and transition into the other polymorphs.16

For the calcite plot in Fig. 9, the LES simulations show significantly larger particles than those
of the ODT simulations. However, the same trends show up with regards to the Reynolds num-
ber as increasing the Reynolds number decreases the particle size for the ODT results. As with
ACC, the LES results only show this trend for the two highest Reynolds numbers. In both sets
of simulations, the size of particles at the two highest Reynolds numbers become nearly indistin-
guishable. It is likely that at this high of a Reynolds number, the rate has become reaction limited,
rather than mixing limited. The aragonite plot shows many of the same trends where the LES set
of simulations result in larger radii than the set of ODT ones. The vaterite results show the most
discrepancies, the LES results show a lower growth rate of this polymorph than what occurs in
the ODT results. The results do show the same expected qualitative trend of increasing Reynolds
number resulting in a decrease in particle size.

The plots shown previously pertaining to the mixture fracture can be used as an explanation for
the major differences in the LES and ODT results. In Fig. 5 it is seen that while the approximate
time can be matched where the system goes from completely segregated to completely mixed, the
time scale of this change between the two models is quite different. The LES takes a very small
amount of time to reach the mixed state compared to the ODT. For the lowest Reynolds number,
the ODT simulation results do not show the mixture fraction reaching the well-mixed state in the
time frame shown. Since particle nucleate size decreases as supersaturation ratios increase, via
Eq. (5), one would expect the LES to form smaller particles. However, except for vaterite, clearly
this was not the case.

The actual cause of the discrepancies seen in the LES results are likely due to the variance of
the mixture fraction. In Fig. 6, all three Reynolds numbers show a significantly larger variance
in the mixture fraction for the LES results in comparison to the ODT results. While the average
mixture fraction may be near 0.5, the large variance means that much of the mixed portion of
the domain is likely not near 0.5. For example, half could be at 0.4 while half is at 0.6, which
would lead to larger particles nucleating in the LES simulations than what occur in the ODT
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Figure 9: Spatial- (LES) and ensemble- (ODT) averaged particle radius on centerline, with time

on a semi-log scale. Lines correspond to LES results and lines with symbols correspond to ODT

results.
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simulations. The lowest Reynolds number case for the LES simulations showed unexpected results
in the comparison, again this could be due to the large mixture fraction variance. Since Fig. 6 is
on a semi-log scale, the length of time the large value of the mixture fraction variance exists in the
system is about 10 times longer at the low Reynolds number than at the high Reynolds number.
Such large heterogeneity in the domain could be the cause of the non-intuitive results from the
LES for the lowest Reynolds number.

In order to show that increasing the resolution of the LES may lead to a better comparison
with the ODT results, simulations were run without the solid phase physics enabled at different
grid resolutions. The centerline velocity and velocity fluctuations for the different resolutions are
shown in Fig. 10 for the U0 = 6 m/s case. The velocity is used for this brief grid resolution study,
as it was the variable used for the ODT parameter tuning. The grid resolution is varied from four
times as coarse as prior results up to 25% more refined than the previous simulations. The plot for
the velocity shows that the delay time in the LES before the jet mixing occurs is decreased as the
resolution is increased, the smaller period in the mixing delay trends towards the result expected
from the refined ODT grid. The plot for the velocity fluctuations shows the trend where an increase
in the resolution leads to decreasing maximum fluctuation values. It is possible that if computing
resources were available to increase the resolution further, better consistency with the ODT results
may occur.

Analysis of the Subgrid Mixing Model
The subgrid mixing model, utilized in the LES implementation, was examined by applying a

filter to a set of ODT data to create a pseudo-LES type result. The filter was applied to the raw set
of scalar data, and then the nucleation rates were calculated based on these filtered scalars. After
creating the filtered ODT data set, the resolution of the ODT was changed and the effect of the
mixing model at different grid resolutions was observed. The grid resolution was changed from
80 to 2560 grid points in the ODT domain, doubling the resolution between each simulation. The
nucleation rate and ratios for ACC at differing grid resolutions are shown in Fig. 11 and Fig. 12,
respectively. ACC was used for this analysis as this polymorph has the highest nucleation rates,
and thus affects mass rate of change from aqueous to solid phase the most. The nucleation rates
used in the plots are averaged over the entire ODT domain.

The nucleation rate at different time intervals of the ODT simulation is plotted in Fig. 11.
Each grid resolution was run both with and without the mixing model enabled. The highest grid
resolution of 2560 points is assumed to be completely resolved for this analysis. Thus, as the
resolution is increased, the data is assumed to converge to this value. It is shown that for early times
in the system, 2.5 ms and 5 ms, the mixing model lowers the nucleation rate of the system for the
lower grid resolutions, which makes it more accurate in comparison to the resolved solution. The
plot here is shown with a log scale, so the difference in rates between the low and high resolution
cases is significant. These early time intervals are also the most critical, as the nucleation here
occurs orders of magnitude faster than the other periods of the simulation. Propagation error
likely leads to less improvement seen in the later simulation times. Nucleating less mass out of
the system early in the simulation, as with lower resolution cases, leads to more mass remaining
in solution at later times. This is likely the cause for t = 10 ms showing such little improvement
compared to the improvement seen at t = 2.5 ms.
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Figure 10: The velocity and velocitiy fluctuations along the centerline of the LES simulation for

U0 = 6 m/s as the grid resolution is increased. The resolution of the precipitation simulations is

highlighted with a dotted line.
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Figure 11: Nucleation rate of ACC at different grid resolutions in the ODT results.
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The ratio of the nucleation rate as a function of grid resolution to the resolved nucleation rate
is shown in Fig. 12. B0 is the birth rate at a given grid resolution, B0,M is the birth rate at the same
resolution using the mixing model, and B0,I is the birth rate at the resolution of 2560 grid points.
The solid lines represent the factor of error when comparing the under-resolved cases to the fully
resolved case. The dashed lines show the same factor with respect to the use of the mixing model
in the same resolution. For example, a value of 1 would represent perfect agreement with either
the full resolution, or with the mixing model. This shows that the mixing model can improve the
results in the lower resolution cases, and for many of the times shown simply incorporating the
mixing model provides better improvement then doubling the grid resolution.

A plot of the central environment value, ω2, is shown in Fig. 13 for the early time period of
t = 2.5 ms, this value corresponds to the well-mixed portion of the subgrid scale. As the grid
resolution is increased, the value for the second environment in the shear layer is also increased.
This shows that the subgrid model behaves as it is prescribed in the theory. At low resolutions the
subgrid is unmixed and the weight is low, while at high resolution the weight approaches 1, which
corresponds to a perfectly mixed subgrid and fully resolved scalar field.

Conclusion

The study here presents two different sets of CFD simulations using LES and ODT methods
to examine the precipitate system of calcium carbonate. The results indicate that the properties
of the particle size distribution can be manipulated by altering the Reynolds number. Specifically,
increasing the mixing rate of the system results in an increase in the number density for all four
polymorphs, as well as the precipitation of particles with smaller radii.

The LES code utilized a subgrid mixing model in order to account for the unresolved scales.
An analysis of this subgrid mixing model was performed within the ODT framework by altering
the grid size and filtering the data to create a pseudo-LES result. This analysis of the mixing model
showed that it can improve accuracy in the source terms for scalar fields without increasing the grid
resolution, which can be of great computational benefit. The mixing model analysis demonstrates
decreasing error when utilizing the mixing model that is better in some cases than doubling the
resolution, this is an excellent result for the limited computational cost of implementing this model.
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