Hierarchical Parcel Swapping (HiPS) Model

Motivation

- A key challenge of turbulent combustion is the wide range of length and timescales
 - DNS costs are extremely high (scales with Re³).
- LES and RANS require subgrid models of unresolved reaction and transport processes.
 - Models struggle to accurately capture all combustion phenomena under a range of flow conditions.
 - Premixed vs. nonpremixed
 - Flame extinction and ignition
 - Soot and NO_x formation
- PDF transport models represent the reaction source but need accurate mixing model closures.

Models idealize these processes

https://en.wikipedia.org/wiki/Kelvin– Helmholtz_instability

Motivation

- Mixing closures often consist of intermixing pairs or groups of notional fluid particles.
 - Interaction by Exchange with the Mean (IEM)
 - Modified Curl (MC)
 - Euclidean Minimum Spanning Trees (EMST)
 - Shadow Position (SP)
- Challenges include not mixing of particles with unphysically dissimilar states.
 - How to define "close" in state space?
 - Thermochemically "close" particles may not be physically close.

https://en.wikipedia.org/wiki/Kelvin– Helmholtz_instability

Hierarchical Parcel Swapping (HiPS)

- HiPS is a simulation approach for turbulent mixing
 - A.R. Kerstein, J. Stat. Phys. 153:142-161 (2013)
 - A.R. Kerstein, J. Fluid Mech. 750:421-463 (2014).
- Uses a binary tree structure to define a geometric progression of length scales.
- Fluid elements are defined at the base of the tree and interact as pairs.
- Computationally efficient
- Includes elements of LEM and ODT
 - But does not directly model 1-D diffusion in a physical coordinate
- Can be run standalone or as a flow model
 - Facilitates subgrid wall-models; subgrid jets.

Essentials of Turbulent Mixing

HiPS can be thought of as a *minimal* model of turbulent mixing

- Include a range of scales
- Follow Kolmogorov scaling
- Scale separation
 - Scales interact with local environment
 - Large and small scales are decoupled
- Cascade of scales: large to small
- Increase of initially close parcels

i0q i1r i0qs **→→** i1rs

Sweeping of small scales by large scales

 Mixing—Swap Nodes - Select a node - Select a grandchild to the right - Select a grandchild to the left - Swap the two subtrees

Parcel pairing changes

Model Formulation—Tree Scales

- Specify length scales at each level
 - Top level is the tree length scale L₀
 - Lo is user-defined
 - Each level decreases length scale by factor A<1.
 - If parcels occupy fluid volume, then for a binary tree, each subtree occupies half the volume as the tree above, with a length scale ratio of A.

Level	Length scale
0	L ₀
1	L ₀ /2
2	L ₀ /4
i	L ₀ /2 ⁱ
n-1	L ₀ /2 ⁿ⁻¹

Parcel "proximity" is the node level of the nearest node connecting two parcels. This is used to define a parcel separation based on the corresponding length scale.

Model Formulation—Tree Scales

- Specify time scales at each level
 - Top level is the tree length scale τ_0
 - τ₀ is user-defined
 - Use inertial range scaling
 - ε is constant
 - scales depend on ε

$$\tau = \tau_0 \left(\frac{l}{L_0}\right)^{2/3}$$

$$\chi \sim \frac{\theta^2}{\tau}$$
$$\theta^2 \sim l^{2/3}$$

$$E \sim \frac{\theta^2}{k} \sim \theta^2 l \sim k^{-5/3}$$

Kolmogorov's second similarity hypothesis. In every turbulent flow at sufficiently high Reynolds number, the statistics of the motions of scale L in the inertial subrange have a universal form that is uniquely determined by ε.—Pope, *Turbulent Flows*

Level	Length scale	Time scale
0	L ₀	$ au_0$
1	L ₀ /2	$\tau_0 \left(\frac{1}{2}\right)^{2/3}$
2	L ₀ /4	$\tau_0 \left(\frac{1}{4}\right)^{2/3}$
i	L ₀ /2 ⁱ	$\tau_0 \left(\frac{1}{2^i}\right)^{2/3}$
n-1	L ₀ /2 ⁿ⁻¹	$\tau_0 \left(\frac{1}{2^{n-1}}\right)^{2/3}$

Model Formulation—Eddy Events

- Tree swaps = "eddy events"
- Eddy rate at each level computed from time scales

$$\lambda_i = rac{1}{ au_i} \cdot 2^i$$
 2 j factor is # nodes at level i

	Level	Length scale	Time scale
	0	Lo	$ au_0$
	1	L ₀ /2	$\tau_0 \left(\frac{1}{2}\right)^{2/3}$
	2	L ₀ /4	$\tau_0 \left(\frac{1}{4}\right)^{2/3}$
	i	L ₀ /2 ⁱ	$\tau_0 \left(\frac{1}{2^i}\right)^{2/3}$
]	n-1	L ₀ /2 ⁿ⁻¹	$\tau_0 \left(\frac{1}{2^{n-1}}\right)^{2/3}$

• Eddy event times at each level are sampled as a Poisson process with mean rate λ_i .

$$p(\Delta t_i) = \lambda_i e^{-\lambda_i \Delta t_i}$$

$$P_c(\Delta t_i) = \int_0^{\Delta t_i} p(\Delta t_i) d\Delta t_i$$

$$P_c(\Delta t_i) = 1 - e^{-\lambda_i \Delta t_i}$$

$$\Delta t_i = -\frac{\ln(P)}{\lambda_i} \qquad P \to r \in [0, 1]$$

Model Formulation—Eddy Events

Eddy occurrence times at three levels

- Combine the times for the three levels
- Make a list of the levels for each eddy event time.
- Advance mixing and reaction processes for each parcel between eddy events.

Model Formulation—Mixing/Reaction

Two mixing models

- Fast mixing:
 - Eddy events instantaneously mix the state
 - Solve separate evolution equations for chemical reaction

- Rate equation:

- Semi-implicit, semi-analytic solution approach
- Also works well with a second order Strang splitting

Fast mixing

$$\phi_{mix} = \frac{1}{2}(\phi + \phi_{nb})$$

$$\frac{d\phi}{dt} = \frac{\dot{m}_{\phi}^{"'}}{\rho}$$

Solve reaction equations implicitly

Model Formulation—Mixing/Reaction

Two mixing models

- Fast mixing:
 - Eddy events instantaneously mix the state
 - Solve separate evolution equations for chemical reaction
- Rate equation:
 - Semi-implicit, semi-analytic solution approach
 - Also works well with a second order Strang splitting

Fast mixing

$$\phi_{mix} = \frac{1}{2}(\phi + \phi_{nb})$$

$$\frac{d\phi}{dt} = \frac{\dot{m}_{\phi}^{""}}{\rho}$$

 $rac{d\phi}{dt} = rac{\dot{m}_{\phi}^{\prime\prime\prime}}{
ho}$ Solve reaction equations implicitly

Rate Equation

$$\frac{d\phi}{dt} = \frac{-1}{\tau_m}(\phi - \phi_{nb}) + \frac{\dot{m}_{\phi}^{""}}{\rho}$$

$$\frac{d\phi}{dt} = \frac{-1}{\tau_{m}}(\phi - \phi_{nb}) \longrightarrow$$

Mixing only
$$\frac{d\phi}{dt} = \frac{-1}{\tau_m}(\phi - \phi_{nb}) \longrightarrow \phi(t) = \frac{1}{2}\phi_0(1 - e^{-2t/\tau_m}) + \frac{1}{2}\phi_{nb,0}(1 - e^{-2t/\tau_m})$$

1-step mixing rate

Implicit solve to
$$t+\Delta t$$
 using constant R_{mix} $\frac{d\phi}{dt}=R_{mix}+\frac{\dot{m}_{\phi}^{\prime\prime\prime}}{\rho}$ \blacksquare $R_{mix}=\frac{\phi(t+\Delta t)-\phi(t)}{\Delta t}$

$$R_{mix} = \frac{\phi(t + \Delta t) - \phi(t)}{\Delta t}$$

Results—Simple Mixing

Parallel Reactions

$$A + B \to R$$
$$A + R \to P$$

Take R as the desired product

$$M_A = M_B = 1$$

$$Da = \frac{\tau_{mix}}{\tau_{rxn}} = \frac{\text{reaction rate}}{\text{mixing rate}}$$

$$S = \frac{Y_R}{Y_R + Y_P}$$

$$\frac{dY_A}{dt} = -Da_1Y_AY_B - \frac{1}{2}Da_2Y_AY_R$$

$$\frac{dY_B}{dt} = -Da_1Y_AY_B$$

$$\frac{dY_R}{dt} = 2Da_1Y_AY_B - Da_2Y_AY_R$$

$$\frac{dY_P}{dt} = \frac{3}{2}Da_2Y_AY_R$$

Parallel Reactions

$$A + B \to R$$
$$A + R \to P$$

$$\frac{dY_P}{dt} = \frac{3}{2}Da_2Y_AY_R$$

- Initially segregated reactants, 9 levels
- Re = 1625 (645, 256)

BYU

- Vary τ_{mix} with constant reaction rates
- Higher mixing rate favors desired product R.
 - Mixing dilutes R, reducing its concentration, hence the reaction rate forming P

Parallel Reactions

$$A + B \to R$$
$$A + R \to P$$

$$\frac{dY_P}{dt} = \frac{3}{2}Da_2Y_AY_R$$

- Initially segregated reactants, 9 levels
- Re = 1625 (645, 256)

BYU

- Vary τ_{mix} with constant reaction rates
- Higher mixing rate favors desired product R.
 - Mixing dilutes R, reducing its concentration, hence the reaction rate forming P

- Turbulent premixed ethylene flame
- Initialize 20% of the parcels to be burnt, 80% to be fresh reactants
- Vary the mixing rate
- High mixing results in flame extinction
 - Reactants are mixed into the products faster than reaction occurs.
 - This reduces temperature and quenches the reaction.

Extinguishes

- Turbulent premixed ethylene flame
- Initialize 20% of the parcels to be burnt, 80% to be fresh reactants
- Vary the mixing rate
- High mixing results in flame extinction
 - Reactants are mixed into the products faster than reaction occurs.
 - This reduces temperature and quenches the reaction.

Extinguishes

- Turbulent premixed ethylene flame
- Initialize 20% of the parcels to be burnt, 80% to be fresh reactants
- Vary the mixing rate
- High mixing results in flame extinction
 - Reactants are mixed into the products faster than reaction occurs.
 - This reduces temperature and quenches the reaction.

- Turbulent premixed ethylene flame
- Initialize 20% of the parcels to be burnt, 80% to be fresh reactants
- Vary the mixing rate
- High mixing results in flame extinction
 - Reactants are mixed into the products faster than reaction occurs.
 - This reduces temperature and quenches the reaction.

Differential Diffusion (nonunity Sc)

2 Cases

- High D: Sc < 1
- Low D: Sc > 1

l_b ——— i_b

High D: Sc < 1

Scalar diffusion timescale = inertial timescale

$$\eta$$
 — i_{r}

$$\frac{l_b^2 Sc}{\nu} = \tau_\eta \left(\frac{l_b}{\eta}\right)^{2/3} = \frac{\eta^2}{\nu} \left(\frac{l_b}{\eta}\right)^{2/3}$$

$$Sc = \left(\frac{\eta}{l_b}\right)^{4/3}$$

$$Sc = \left(\frac{\eta}{l_b}\right)^{4/3}$$

$$Sc = \frac{1}{2} \left(\frac{l_b}{\eta}\right)^{2/3}$$

$$Sc = \frac{1}{2} \left(\frac{l_b}{\eta}\right)^{4/3}$$

$$Sc = \frac{1}{2} \left(\frac{l_b}{\eta}\right)^{4/3}$$

Mix all parcels across the given level ib

Differential Diffusion (nonunity Sc)

2 Cases

- High D: Sc < 1
- Low D: Sc > 1

Low D: Sc > 1

- Levels between i_{η} and i_b have timescale τ_{η}
- Scalar diffusion timescale = Kolmogorov timescale

$$\frac{l_b^2 Sc}{\nu} = \frac{\eta^2}{\nu}$$

$$Sc = \left(\frac{\eta}{l_b}\right)^2$$

$$\eta = \frac{L_0}{2^{i_\eta}}$$

$$l_b = \frac{L_0}{2^{i_b}}$$

$$l_b = \frac{L_0}{2^{i_b}}$$

Mix all parcels across the given level i_b

Arbitrary Sc

- Eddy events at levels greater or equal to ip result in full mixing of the scalar across the relevant subtree.
- With $i_m < i_b < i_p$ mixing events at level i_m homogenize the scalar across the subtree with probability p_m .

$$p_m = 1$$
 for $i_b = i_m$
 $p_m = 0$ for $i_b = i_p$

• Linear profile for p_m

$$p_m = \frac{i_p - i_b}{i_p - i_m} = i_p - i_b$$

$$p_m = \frac{\log(l_b/l_{i_p})}{\log(l_{i_m}/l_{i_p})} = \frac{\log(\lambda_b/\lambda_{i_p})}{\log(\lambda_{i_m}/\lambda_{i_p})}$$

$$p_m = \frac{i_p - i_b}{i_p - i_m} = i_p - i_b$$

$$i_p = \operatorname{ceil}(i_b)$$

$$i_b = i_\eta + \frac{3}{2} \log_4(Sc) \quad Sc < 1$$

$$i_b = i_\eta + \log_4(Sc) \quad Sc > 1$$

Conclusions

- HiPS is a promising mixing model for turbulent flows.
- Can include reactions and variable Sc number effects.
- Captures a range of time and length scales.
- Highly efficient mixing process that follows turbulent scaling laws.
- Formulations as both a mixing model, and as a flow model are possible. These follow LEM and ODT analogs.
- Can be used as a SGS mixing model for PDF transport methods.
- Initial results demonstrate capabilities for reacting flows and variable Sc number.

