
Notes on the Discrete Fourier Transform

David O. Lignell

April 12, 2012

Consider a periodic grid with period L with N points labeled 1, 2, . . . N , on a domain of length
L, with ∆x = L/N , and point 1 is at x = 0 (see Figure 1). Now, we can put sine and cosine waves
on this grid. How many waves can we fit on the grid? Consider cos(2πnx/L). This function has
period L/n. When n = 1 we have a single complete wave on the grid, when n is larger we have
more waves on the grid with smaller wavelengths. The smallest wave that will fit on the grid has a
period of twice the grid spacing, or p = 2 ∗∆x = 2L/N . But this period is equal to L/n, so nmax
is N/2.

Now we write a generic periodic function f on the grid as

f = a0 +
N/2∑
n=1

[an cos(2πnx/L) + bn sin(2πnx/L)]

This equation is converted to complex form using the Euler identities

eix = cos(x) + i sin(x),

cos(x) =
1
2

(eix + e−ix),

sin(x) =
1
2i

(eix − e−ix).

Making the substitutions, and simplifying gives

f = a0 +
N/2∑
n=1

cne
2πinx/L +

N/2∑
n=1

kne
−2πinx/L,

Figure 1: Hypothetical grid on which our function f lives.

1

where

cn =
an
2

+
bn
2i

=
an
2
− bni

2
,

kn =
an
2
− bn

2i
=
an
2

+
bni

2
.

Here, cn and kn are complex, but f is real, so the imaginary parts in the above equation cancel.
So far kn and cn are just constants. Now, break with the expression for kn in terms of an and
bn above, and rewrite the second sum in the equation for f with new bounds from n = −N/2 to
n = 1. Do this by making the substitution n = −m, or m = −n in the second sum, then change
the summation index from m to n. Also, kn in the following is just a constant coefficient (different
than in the previous equations):

f = a0 +
N/2∑
n=1

cne
2πinx/L +

−1∑
n=−N/2

kne
2πinx/L.

Now, the sums are over different values of n, so we can just call kn cn in the second sum (they are
just constant for each n after all). Then combine the two sums over the range [−N/2, N/2], and
absorb a0 into the sum for n = 0, where now a0 is c0:

f =
N/2∑

n=−N/2

cne
2πinx/L.

Now, we are over determined since we have N + 1 terms, but only N points. So, either set
c−N/2 = cN/2, or just let the sum range from [−N/2 + 1, N/2]. The result is

f =
N/2∑

n=−N/2+1

cne
2πinx/L.

Again cn are complex. If you compare opposing nodes, like n = 2, n = −2, then for the imaginary
parts to cancel, we need cn = c∗−n. Real functions have c0 is real, and cn have conjugate symmetry.
We can write this explicitly in terms of the grid points noting that L = N∆x, and x = j∆x, so
that x/L = j/N . The result is

fj =
N/2∑

n=−N/2+1

cne
2πinj/N .

This is what we normally see as the inverse discrete Fourier transform of f . Geometrically, consider
j = 1. Then cne

2πin/N is a point in the complex plane, written in polar form Aeiω, where A is the
amplitude and ω is the angle from the real axis. This is obvious when written as A cos(ω)+Ai sin(ω).
Now, ignoring the amplitude A, (that is considering the unit circle in the complex plane), we have
the situation shown in Figure 2 for N = 5, and N = 6. We traverse the circle as shown. Some
points are real, and those that are complex are connected by the dashed lines. The coefficients of
these points, or amplitudes cn normalized by their magnitudes would fall on the points shown, and

2

Figure 2: Points in the complex plane.

when added, the imaginary parts cancel. Note that for odd N , we have to round appropriately, so
that for N = 5 we have n = −2, −1, 0, 1, 2. Similar results are obtained for other values of j, but
we loop more than once around the circle.

Often, one sees the transform written with bounds from n = 0 to n = N − 1 instead of from
n = −N/2 + 1 to n = N/2. This is done by changing the index on the summation using the
substitution m = n+N/2− 1. Once we are done, we can change the notation from m, back to n.
Here, as above, the value of cn will change, but it is just a constant in the summation. The result
is

fj =
N−1∑
n=0

cne
2πinj/N .

Now the ordering in Figure 2 would start at the point labeled zero and traverse counter-clockwise
to N − 1. The connected points would have conjugate symmetry. This is illustrated with Matlab
using the values for f for N = 5 and N = 6 given in Table 1. Here, the conjugate symmetry is
highlighted on the imaginary parts of cn.

Let us rewrite the inverse discrete Fourier transform (IDFT) as

fj =
N−1∑
n=0

Fne
2πinj/N .

Then the corresponding discrete Fourier tranform (DFT) of f is

Fn =
1
N

N−1∑
j=0

fje
−2πinj/N .

This can be verified by direct substitution. Note the factor of 1/N in the DFT. This factor could
just as well have gone on the IDFT (and sometimes it is written this way). Conversely, one can
split the 1/N into two 1/

√
N factors, and give one to the IDFT and one to the DFT. Also note the

sign difference on the exponent. These signs can be reversed.

3

Table 1: Results of the inverse discrete Fourier Transform.

N = 6 N = 5
n fn cn fn cn
0 0.64621 0.62759 + 0.00000i 0.64621 0.57453 + 0.00000i
1 0.45634 0.03180 - 0.00559i 0.45634 -0.03033 + 0.04392i
2 0.83897 -0.02974 - 0.12044i 0.83897 0.06617 - 0.06458i
3 0.49002 0.01450 + 0.00000i 0.49002 0.06617 + 0.06458i
4 0.44110 -0.02974 + 0.12044i 0.44110 -0.03033 - 0.04392i
5 0.89293 0.03180 + 0.00559i

Example–One Dimensional Homogeneous Turbulence

A common problem in turulence simulation in DNS and LES is the initialization of a turbulent
velocity field. This is usually done by creating a random velocity field that is consistent with a
model turbulent kinetic energy spectrum E(k), where E is the kinetic energy per unit mass, per
unit wave number k. The wavenumber has units of inverse meters. Here, a one dimensional velocity
field is specified. The energy spectrum satisfies the condition

∫∞
0 E(k)dk = 1

2u
′2, where u′ is the

RMS velocity fluctuation. To specify the velocity field, we proceed as follows:

1. Specify a domain L, and a grid of N points on the domain. The domain is periodic with
period L. The points are evenly spaced from x = 0 to x = L− dx, where dx = L/N . In other
words xj = j ∗ dx, where j ranges from 0 to N − 1.

2. Corresponding to this grid in physical space of N points, we have a grid of wavenumbers
kn = n/L, where n ranges from 0 to N − 1. The units on k are inverse meters.

3. Now, for each wavenumber, we evaluate En = E(kn).

4. Find the Fourier coefficient ûn corresponding to En.

5. Now take the inverse Fourier transform of all ûn to get uj .

A few points need discussing. First, on a physical grid on N points, we only have half that many
discrete waves. Referring to Fig. 2, we have N/2 + 1 discrete waves (integer division for odd N).
We have N/2 + 1 energies En. These will give corresponding ûn. We then populate the ûn for the
other higher wavenumbers kn for n = N/2 + 2 to n = N − 1, using conjugate symmetry since we
want uj to be real. Step 4 is not well described. We use Parseval’s theorem:

1
N

N−1∑
n=0

ûnû
∗
n =

N−1∑
j=0

u2
j . (1)

Now, the next progression follows:

N/2+1∑
n=0

E(kn)dk =
1
2
u′2 =

1
2N

N−1∑
j=0

u2
j =

1
2N2

N−1∑
n=0

ûnû
∗
n =

1
N2

N/2+1∑
n=0

ûnû
∗
n. (2)

4

The first equality is the definition of the energy, given above. The second equality is just half of the
average square velocity. The third equality follows from Parseval’s theorem, and the fourth uses
the conjugate symmetry. Note that the coefficient for k = 0 is zero since the velocity fluctuation
has zero mean.

Now, comparing the first and last terms in this equation, we see that E(kn) = 1
N2 ûnû

∗
n. To specify

ûn, we recognize that ûnû∗n = A2, where A is the amplitude of ûn in polar coordinates. We can
write ûn = a+ bi = Aeiφ = A cosφ+Ai sinφ. We compute A as A = N

√
E(kn). The phase angle

φ is randomized between 0 and 2π (this gives the random velocity field). We can then compute a
and b, hence ûn. We then proceed with step 5.

The following is a Matlab code illustrating the process:

%%%
% DOL 10/17/11
%
% Initialize a 1-D turbulent velocity field
% Based on Pope’s model spectrum. See "Turbulent Flows" p. 232
% Compute the parameters cl_p and ce_p in Pope’s model turbulent
% kinetic energy spectrum. See Pope "Turbulent Flows" p. 232
% These parameters are enforced by integrating the spectrum to
% get the desired energy and dissipation rate.
%
% IFFT: u_j = sum n=0,N-1 uhat_n * exp(2*pi*i*n*j/N)
% FFT: uhat_n = 1/N * sum j=0,N-1 u_j * exp(-2*pi*i*n*j/N)
% If we have N points, then we get N/2+1 waves for even N.
% Parseval’s theorm says that [1/N * sum uhat*conj(uhat)] =
% [sum u*u], sums are 0,N-1
% We have: (sumh(E*dk)) = (1/2*u’u’) = (1/2/N*sum(u*u)) =
% (1/2/N/N*sum(uhat*conj(uhat))) =
% (1/N/N*sumh(uhat*conj(uhat))),
% where sumh means sum from 0 to N/2 (h for half).
% Then the first and last equalities are (sumh(E*dk)) =
% (1/N/N*sumh(uhat*conj(uhat))).
% To get u, we need uhat so we can take u=ifft(uhat).
% uhat comes from E, and they are related by the above equality.
% We then take the amplitude of uhat as A = sqrt(E*dk*N*N).
% We have N/2+1 of these.
% We then randomize the phase angle phi.
% We then compute uhat = a + bi using a=A*cos(phi) and b=A*sin(phi).
% Then we use conjugate symmetry to get uhat for n=N/2+1 to N-1.
% Then we get u.
%
%%%

5

clear;

global cl_p ce_p eta Li eps nu kine

%----------------------- User specifications

nu = 1.5E-5 % kinematic viscosity
rho = 1.2 % density
L = 0.1 % domain size
Li = 0.0254 % integral scale (specifies ke)
neta = 2 % number of points per eta scale (integer)

%------ set one of these and the flag specifyUprime

up = 6.65; % velocity fluctuation (specifies ke)
eta = Li/1000; % Kolmogorov length scale
specifyUprime = 0 % 1 is true, else uses eta

%----------------------- Useful values

if(specifyUprime)
up
kine = 1/2*up^2
eps = kine^(3/2)/Li
eta = (nu^3/eps)^0.25 % Kolmogorov length

else
eta
eps = nu^3/eta^4;
kine = (Li*eps)^(2/3);
up = sqrt(2*kine);

end

Re = (Li/eta)^(4/3)
ueta = (eps*nu)^0.25
lambda = sqrt(10)*eta^(2/3)*Li^(1/3)
Re_lambda = up*lambda/nu
mu = nu*rho

%----------------------- Get spectrum parameters

cl_p = 5.9787; % initial guesses for params
ce_p = 0.4036;
cparams = [cl_p; ce_p];

6

options = optimset(’TolFun’, 1.0E-10, ’TolX’, 1.0E-10);
[cparams fvalShouldBeZero] = fsolve(@fGetParams, cparams, options)
RelativeFvalShouldBeZero=fGetParams(cparams)./[kine eps]

%------------------------ Set the grid

N = ceil(neta*L/eta)
dx = L/N; % physical grid spacing
x=[0:N-1]’*dx; % physical grid

k=[0:N-1]’/L; % wave grid
dk = k(2)-k(1); % wave grid spacing
n=[1:N]’; % wave space indicies
nh=[1:N/2+1]’; % half of the wave space indicies
Nh=floor(N/2+1); % half the grid points: N=6 --> 4, N=5 --> 3

%----------------------- Set turbulence parameters and spectrum

fl = (k(nh).*Li ./ sqrt((k(nh)*Li).^2 + cl_p)).^(5/3+2);
fe = exp(-5.2 * (((k(nh).*eta).^4 + ce_p^4).^0.25 - ce_p));
E(nh) = 1.5*eps^(2/3)*k(nh).^(-5/3).*fl.*fe;

E = E’;
E(1) = 0;

%----------------------- Get the fourier coefficients (uhat)

A = sqrt(E(nh)*dk*N*N); % mode amplitude
phi = rand(Nh,1)*2*pi; % randomize the phase angle
if(mod(N,2)==0)

phi(N/2+1)=0; % make sure the middle phase is zero else no conj symm
end
a = A.*cos(phi); % get the real part
b = A.*sin(phi); % get the imag part

uhat = complex(a,b); % form the complex mode

%----------------------- Impose conjugate symmetry

ii = 1:ceil(N/2)-1 + 1; % impose conjugate symmetry (+1 for matlab indexing)
jj = N-ii + 1; % for N=6: 1234 --> 123432; for N=5: 12332
uhat(jj) = conj(uhat(ii));

7

%------------------------ Grab the u profile

u=ifft(uhat,’symmetric’); % get the velocity field

%----------------------- Output some sanity checks and plot

disp(’The next four values should be the same:’);

upup_div_2 = up*up/2 % average kinetic energy specified
sum_Edk = sum(E*dk) % integral of E = 1/2*up*up
sum_uu_div_2N = sum(u.*u)/2/N % average kinetic energy result
sum_uhat_conjuhat_div_2NN = sum(uhat.*conj(uhat))/2/N/N % fourier energy

subplot(3,1,1);
loglog(k(nh)*eta,E/eta/ueta^2);
xlabel(’\kappa\eta’);
ylabel(’E/\eta u_{\eta}^2’);

subplot(3,1,2);
plot(k,abs(uhat));
xlabel(’Wavenumber (1/m)’);
ylabel(’|uhat|’);
xlim([0 k(end)]);

subplot(3,1,3);
plot(x,u);
xlabel(’Position (m)’);
ylabel(’Velocity (m/s)’);
ylim([min(u)+min(u)*0.1,max(u)*(1.1)]);

%%%

function y = fGetParams(cparams)

global cl_p ce_p eta Li eps nu kine

cl_p = cparams(1);
ce_p = cparams(2);

int1 = quadgk(@espec, 0, Inf);
int2 = quadgk(@twonuktwoE, 0, Inf);

y(1) = int1 - kine;
y(2) = int2 - eps;

8

end

%%%

function E = espec(k)

global cl_p ce_p eta Li eps nu kine

fl = (k.*Li ./ sqrt((k*Li).^2 + cl_p)).^(5/3+2);
fe = exp(-5.2 * (((k.*eta).^4 + ce_p^4).^0.25 - ce_p));

E = 1.5*eps^(2/3)*k.^(-5/3).*fl.*fe;

end

%%%

function y = twonuk2E(k)

global cl_p ce_p eta Li eps nu kine

y = 2*nu.*k.*k.*espec(k);

end

%%%

9

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

10
4

κη

E
/η

 u
η2

0 2 4 6

x 10
4

0

2000

4000

6000

8000

Wavenumber (1/m)

|u
h

a
t|

0 0.02 0.04 0.06 0.08 0.1

−20

−10

0

10

20

Position (m)

V
e

lo
c
it
y
 (

m
/s

)

Figure 3: Energy spectrum, Fourier coefficients, and velocity field.

10

