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in Fig. 1.7(b) is
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Remark 1.4.1 As we will see below (Section 1.5), in a multigrid algorithm it is usually
not necessary to build up the matrix A, coming from the discretization. The multigrid
components are based on “local” operations; multiplications and additions are carried out
grid point by grid point. The storage that is needed in a multigrid code mainly consists of
solution vectors, defects and right-hand sides on all grid levels. >

1.4.2 Poisson Solvers

Table 1.1 gives an overview on the complexity of different solution methods (including
fast Poisson solvers) applied to Model Problem 1. Here direct and iterative solvers are
listed. For the iterative solvers, we assume an accuracy (stopping criterion) in the range of
the discretization accuracy. This is reflected by the loge term. The full multigrid (FMG)
variant of multigrid which we will introduce in Section 2.6 is a solver up to discretization
accuracy.

It is generally expected that the more general a solution method is, the less efficient it is
and vice versa. Multigrid is, however, a counter example for this pattern—indeed multigrid

Table I.1. Complexity of different solvers for the 2D Poisson problem
(N denotes the total number of unknowns).

Method # operations in 2D
Gaussian elimination (band version) O(N?)
Jacobi iteration O(N?loge)
Gauss—Seidel iteration O(N?loge)
Successive overrelaxation (SOR) [431] O(N**loge)
Conjugate gradient (CG) [194] O(N**loge)
Nested dissection (see, for example, [9]) O(N37?)
ICCG [264] O(N>*loge)
ADI (see, for example, [403]) O(N log N loge)
Fast Fourier transform (FFT) [112] O(N log N)
Buneman [93] O(NlogN)
Total reduction [342] O(N)
Multigrid (iterative) O(N loge)

Multigrid (FMG) O(N)




